Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography.

We evaluate various signal processing methods to handle the non-linearity in wavenumber space exhibited by most laser sources for swept-source optical coherence tomography. The following methods are compared for the same set of experimental data: non-uniform discrete Fourier transforms with Vandermonde matrix or with Lomb periodogram, resampling with linear interpolation or spline interpolation prior to fast-Fourier transform (FFT), and resampling with convolution prior to FFT. By selecting an optimized Kaiser-Bessel window to perform the convolution, we show that convolution followed by FFT is the most efficient method. It allows small fractional oversampling factor between 1 and 2, thus a minimal computational time, while retaining an excellent image quality.

[1]  G. Ha Usler,et al.  "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis. , 1998, Journal of biomedical optics.

[2]  TIME SERIES ANALYSIS OF UNEQUALLY SPACED DATA: INTERCOMPARISON BETWEEN THE SCHUSTER PERIODOGRAM AND THE LS-SPECTRA , 1996 .

[3]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[4]  Shoude Chang,et al.  Swept Source Optical Coherence Tomography with Nonuniform Frequency Domain Sampling , 2008 .

[5]  Peter Koch,et al.  Using nonequispaced fast Fourier transformation to process optical coherence tomography signals , 2009, European Conference on Biomedical Optics.

[6]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[7]  Gideon Ho,et al.  Enhancement of Fourier domain optical coherence tomorgraphy images using discrete Fourier transform method , 2008, SPIE BiOS.

[8]  T. Yatagai,et al.  Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. , 2005, Optics express.

[9]  J. Izatt,et al.  Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation. , 2007, Journal of biomedical optics.

[10]  Osami Sasaki,et al.  Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry , 2007 .

[11]  C. Dorrer,et al.  Spectral resolution and sampling issues in Fourier-transform spectral interferometry , 2000 .

[12]  W Drexler,et al.  Ultrahigh resolution Fourier domain optical coherence tomography. , 2004, Optics express.

[13]  Israel Gohberg,et al.  Fast Algorithms with Preprocessing for Matrix-Vector Multiplication Problems , 1994, J. Complex..

[14]  Toyohiko Yatagai,et al.  Profilometry with line-field Fourier-domain interferometry. , 2005, Optics express.

[15]  Dwight G. Nishimura,et al.  Rapid gridding reconstruction with a minimal oversampling ratio , 2005, IEEE Transactions on Medical Imaging.

[16]  Y T Pan,et al.  High-resolution imaging characterization of bladder dynamic morphophysiology by time-lapse optical coherence tomography. , 2005, Optics letters.

[17]  Teresa C. Chen,et al.  Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. , 2004, Optics express.

[18]  Kai Wang,et al.  Time-domain interpolation for Fourier-domain optical coherence tomography. , 2009, Optics letters.

[19]  R. Huber,et al.  K-space linear Fourier domain mode locked laser and applications for optical coherence tomography. , 2008, Optics express.

[20]  S. Yun,et al.  High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength. , 2003, Optics express.

[21]  Romain Maciejko,et al.  Deformable and durable phantoms with controlled density of scatterers , 2008, Physics in medicine and biology.

[22]  Ruikang K. Wang,et al.  Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart. , 2009, Journal of biomedical optics.

[23]  J. Izatt,et al.  Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. , 2005, Journal of biomedical optics.

[24]  Grigory V. Gelikonov,et al.  Linear wave-number spectrometer for spectral domain optical coherence tomography , 2008, SPIE BiOS.

[25]  Ruikang K. Wang,et al.  Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection. , 2007, Optics express.

[26]  Zhao Wang,et al.  Investigation on spectral-domain optical coherence tomography using a tungsten halogen lamp as light source , 2009 .

[27]  R. Leitgeb,et al.  High speed full range complex spectral domain optical coherence tomography. , 2005, Optics express.

[28]  Angelika Unterhuber,et al.  Signal post processing in frequency domain OCT and OCM using a filter bank approach , 2007, SPIE BiOS.

[29]  Michael Pircher,et al.  Single camera based spectral domain polarization sensitive optical coherence tomography. , 2007, Optics express.

[30]  Zhilin Hu,et al.  Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer. , 2007, Optics letters.

[31]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[32]  Grigory V. Gelikonov,et al.  Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography , 2009 .

[33]  J. Fujimoto,et al.  Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. , 2005, Optics express.

[34]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .

[35]  J. Fujimoto,et al.  Three-dimensional endomicroscopy using optical coherence tomography , 2007 .

[36]  Inherent homogenous media dispersion compensation in frequency domain optical coherence tomography by accurate k-sampling. , 2008, Applied optics.

[37]  Stephen A. Boppart,et al.  Interferometric Synthetic Aperture Microscopy , 2007, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[38]  Maciej Wojtkowski,et al.  Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source , 2005 .

[39]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[40]  Kai Wang,et al.  Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system. , 2009, Optics express.

[41]  A. Macovski,et al.  Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.

[42]  Xingde Li,et al.  Real-time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical Doppler tomography. , 2006, Optics letters.

[43]  S. Yun,et al.  In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. , 2004, Optics express.