Bacillus subtilis genome vector-based complete manipulation and reconstruction of genomic DNA for mouse transgenesis

[1]  Yuh Shiwa,et al.  Bacillus subtilis genome vector-based complete manipulation and reconstruction of genomic DNA for mouse transgenesis , 2013, BMC Genomics.

[2]  Ayako Uno,et al.  Bcl11b/Ctip2 Controls the Differentiation of Vomeronasal Sensory Neurons in Mice , 2011, The Journal of Neuroscience.

[3]  M. Itaya,et al.  Construction and manipulation of giant DNA by a genome vector. , 2011, Methods in enzymology.

[4]  M. Itaya,et al.  Genetic connection of two contiguous bacterial artificial chromosomes using homologous recombination in Bacillus subtilis genome vector. , 2009, Journal of biotechnology.

[5]  Peter Mombaerts,et al.  Mapping of Class I and Class II Odorant Receptors to Glomerular Domains by Two Distinct Types of Olfactory Sensory Neurons in the Mouse , 2009, Neuron.

[6]  Timothy B. Stockwell,et al.  Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome , 2008, Science.

[7]  M. Tomita,et al.  Reshuffling of the Bacillus subtilis 168 genome by multifold inversion. , 2007, Journal of biochemistry.

[8]  Koji Kawabata,et al.  Complete Chemical Synthesis , Assembly , and Cloning of a Mycoplasma genitalium Genome , 2008 .

[9]  M. Itaya,et al.  Bottom-up genome assembly using the Bacillus subtilis genome vector , 2008, Nature Methods.

[10]  Stuart Firestein,et al.  Comparative genomics of odorant and pheromone receptor genes in rodents. , 2007, Genomics.

[11]  T. Imai,et al.  Olfactory sensory neurons expressing class I odorant receptors converge their axons on an antero‐dorsal domain of the olfactory bulb in the mouse , 2006, The European journal of neuroscience.

[12]  D. Dubnau,et al.  The Ins and Outs of DNA Transfer in Bacteria , 2005, Science.

[13]  M. Itaya,et al.  Combining two genomes in one cell: stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Itaya,et al.  DNA shuttling between plasmid vectors and a genome vector: systematic conversion and preservation of DNA libraries using the Bacillus subtilis genome (BGM) vector. , 2005, Journal of molecular biology.

[15]  P. Mombaerts,et al.  A Contextual Model for Axonal Sorting into Glomeruli in the Mouse Olfactory System , 2004, Cell.

[16]  C. Huxley,et al.  Recombining overlapping BACs into a single larger BAC , 2004, BMC biotechnology.

[17]  L. Montoliu,et al.  Size Matters: Use of YACs, BACs and PACs in Transgenic Animals , 2001, Transgenic Research.

[18]  M. Itaya Integration of repeated sequences (pBR322) in the Bacillus subtilis 168 chromosome without affecting the genome structure , 1993, Molecular and General Genetics MGG.

[19]  M. Itaya,et al.  Conversion of sub-megasized DNA to desired structures using a novel Bacillus subtilis genome vector. , 2003, Nucleic acids research.

[20]  P. Mombaerts,et al.  Minigenes Impart Odorant Receptor-Specific Axon Guidance in the Olfactory Bulb , 2002, Neuron.

[21]  Peter Mombaerts,et al.  Odorant Receptor Expression Defines Functional Units in the Mouse Olfactory System , 2002, The Journal of Neuroscience.

[22]  Peter Mombaerts,et al.  Specificity of Glomerular Targeting by Olfactory Sensory Axons , 2002, The Journal of Neuroscience.

[23]  S. Firestein,et al.  The olfactory receptor gene superfamily of the mouse , 2002, Nature Neuroscience.

[24]  Nancy A. Jenkins,et al.  Recombineering: a powerful new tool for mouse functional genomics , 2001, Nature Reviews Genetics.

[25]  Gustavo Glusman,et al.  The complete human olfactory subgenome. , 2001, Genome research.

[26]  D. Court,et al.  A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. , 2001, Genomics.

[27]  M. Itaya,et al.  Efficient cloning and engineering of giant DNAs in a novel Bacillus subtilis genome vector. , 2000, Journal of biochemistry.

[28]  P. D. de Jong,et al.  Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. , 2000, Genome research.

[29]  D. Dubnau,et al.  DNA uptake in bacteria. , 1999, Annual review of microbiology.

[30]  Frank Buchholz,et al.  A new logic for DNA engineering using recombination in Escherichia coli , 1998, Nature Genetics.

[31]  N. Heintz,et al.  Homologous recombination based modification in Esherichia coli and germline transmission in transgenic mice of a bacterial artificial chromsome , 1997, Nature Biotechnology.

[32]  I. Simon,et al.  Allelic inactivation regulates olfactory receptor gene expression , 1994, Cell.

[33]  R. Moyzis,et al.  A model system to assess the integrity of mammalian YACs during transformation and propagation in yeast. , 1994, Genomics.

[34]  G. Kelsey,et al.  A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice , 1993, Nature.

[35]  B. Birren,et al.  Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Olson,et al.  Detection and characterization of chimeric yeast artificial-chromosome clones. , 1991, Genomics.

[37]  M. Olson,et al.  Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. , 1987, Science.