Consistent fractional Bayes factor for nested normal linear models

In the Bayesian approach to parametric model comparison, the use of improper priors is problematic due to the indeterminacy of the resulting Bayes factor (BF). The need for developing automatic and robust methods for model comparison has led to the introduction of alternative BFs. Intrinsic Bayes factors (Berger and Pericchi, 1996a) and fractional Bayes factors (FBF) (O'Hagan, 1995) are two alternative strategies for default model selection. We show in this paper that the FBF can be inconsistent. To overcome this problem, we propose a generalization of the FBF approach that leads to the usual FBF or to some variants of it in some special cases. As an important problem, we consider and discuss this generalization for model selection in nested linear models.

[1]  S. Geisser,et al.  A Predictive Approach to Model Selection , 1979 .

[2]  L. Wasserman,et al.  Computing Bayes Factors Using a Generalization of the Savage-Dickey Density Ratio , 1995 .

[3]  James O. Berger,et al.  On The Justification of Default and Intrinsic Bayes Factors , 1996 .

[4]  H. Jeffreys,et al.  Theory of probability , 1896 .

[5]  D. Pauler The Schwarz criterion and related methods for normal linear models , 1998 .

[6]  Fulvio Spezzaferri,et al.  Methods for Default and Robust Bayesian Model Comparison: the Fractional Bayes Factor Approach , 1999 .

[7]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[8]  Larry Wasserman,et al.  The conflict between improper priors and robustness , 1996 .

[9]  Anthony O'Hagan,et al.  Sensitivity of the fractional Bayes factor to prior distributions , 2000 .

[10]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[11]  F. Spezzaferri,et al.  Bayes Factors and Hierarchical Models , 1998 .

[12]  Fulvio Spezzaferri,et al.  Alternative Bayes factors for model selection , 1997 .

[13]  A. O’Hagan,et al.  Properties of intrinsic and fractional Bayes factors , 1997 .

[14]  J. Berger,et al.  Testing Precise Hypotheses , 1987 .

[15]  P. Maher,et al.  Handbook of Matrices , 1999, The Mathematical Gazette.

[16]  A. Zellner,et al.  Posterior odds ratios for selected regression hypotheses , 1980 .

[17]  J. Berger,et al.  The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .

[18]  J. Berger,et al.  Testing a Point Null Hypothesis: The Irreconcilability of P Values and Evidence , 1987 .

[19]  Julia Mortera,et al.  Default Bayes Factors for Nonnested Hypothesis Testing , 1999 .

[20]  F. Spezzaferri,et al.  Comparing hierarchical models using Bayes factor and fractional Bayes factor: a robust analysis , 1996 .

[21]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[22]  D. Spiegelhalter,et al.  Bayes Factors for Linear and Log‐Linear Models with Vague Prior Information , 1982 .

[23]  D. Spiegelhalter,et al.  Bayes Factors and Choice Criteria for Linear Models , 1980 .

[24]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .