Optimizing a dental milling process by means of soft computing techniques

A novel soft computing system to optimize a dental milling process is proposed. The model is based on the initial application of several statistical and projection methods as Principal Component Analysis and Cooperative Maximum Likelihood Hebbian Learning to analyze the structure of the data set and to identify the most relevant variables. Finally, a supervised neural model and identification techniques are applied, in order to model the process and optimize it. In this study a real data set obtained by a dynamic machining center with five axes simultaneously is analyzed to empirically test the novel system in order to optimize the time error.

[1]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[2]  Emilio Corchado,et al.  The application of a two-step AI model to an automated pneumatic drilling process , 2009, Int. J. Comput. Math..

[3]  Colin Fyfe,et al.  A Neural Network for PCA and Beyond , 1997, Neural Processing Letters.

[4]  Franklin A. Graybill,et al.  Introduction to The theory , 1974 .

[5]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[6]  H. Sebastian Seung,et al.  The Rectified Gaussian Distribution , 1997, NIPS.

[7]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[8]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[9]  Emilio Corchado,et al.  Maximum likelihood Hebbian rules , 2002, ESANN.

[10]  Erkki Oja,et al.  Neural Networks, Principal Components, and Subspaces , 1989, Int. J. Neural Syst..

[11]  R. Fletcher Practical Methods of Optimization , 1988 .

[12]  Lars Kai Hansen Controlled Growth of Cascade Correlation Nets , 1994 .

[13]  Daw-Tung Lin,et al.  Integrating a mixed-feature model and multiclass support vector machine for facial expression recognition , 2009, Integr. Comput. Aided Eng..

[14]  F. Herrera,et al.  A Hybrid Learning Process for the Knowledge Base of a Fuzzy Rule-Based System , 2004 .

[15]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[16]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[17]  Emilio Corchado,et al.  1. Soft Computing for detecting thermal insulation failures in buildings , 2009 .

[18]  Emilio Corchado,et al.  A soft computing method for detecting lifetime building thermal insulation failures , 2010, Integr. Comput. Aided Eng..

[19]  Madan M. Gupta,et al.  On the principles of fuzzy neural networks , 1994 .

[20]  Emilio Corchado,et al.  Connectionist Techniques For The Identification And Suppression Of Interfering Underlying Factors , 2003, Int. J. Pattern Recognit. Artif. Intell..

[21]  Emilio Corchado,et al.  Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit , 2002, Data Mining and Knowledge Discovery.

[22]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[23]  Xiangdong He,et al.  A New Method for Identifying Orders of Input-Output Models for Nonlinear Dynamic Systems , 1993, 1993 American Control Conference.

[24]  Lotfi A. Zadeh,et al.  Soft computing and fuzzy logic , 1994, IEEE Software.

[25]  Emilio Corchado,et al.  Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit , 2002, ICANN.

[26]  Stelios D. Bekiros,et al.  Evaluating Direction-of-Change Forecasting: Neurofuzzy Models vs. Neural Networks , 2005, Math. Comput. Model..

[27]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[28]  Babak Hassibi,et al.  Second Order Derivatives for Network Pruning: Optimal Brain Surgeon , 1992, NIPS.

[29]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[30]  Tommy W. S. Chow,et al.  A New Feature Selection Scheme Using a Data Distribution Factor for Unsupervised Nominal Data , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[31]  Huan Liu,et al.  Toward integrating feature selection algorithms for classification and clustering , 2005, IEEE Transactions on Knowledge and Data Engineering.

[32]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[33]  Ying Han,et al.  Structuring global responses of local filters using lateral connections , 2003, J. Exp. Theor. Artif. Intell..

[34]  J. Sjöberg Neural networks for modelling and control of dynamic systems: M. Nørgaard, O. Ravn, N. K. Poulsen and L. K. Hansen. Springer-Verlag, London Berlin Heidelberg, 2000, pp. xiv+246 , 2004 .