Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring

The paper presents a new methodology for high precision monitoring of deformations with a long term perspective using terrestrial laser scanning technology. In order to solve the problem of a stable reference system and to assure the high quality of possible position changes of point clouds, scanning is integrated with two complementary surveying techniques, i.e., high quality static GNSS positioning and precise tacheometry. The case study object where the proposed methodology was tested is a high pressure underground pipeline situated in an area which is geologically unstable.

[1]  B. Pelletier,et al.  Horizontal and vertical interseismic velocity fields in the Vanuatu subduction zone from GPS measurements: Evidence for a central Vanuatu locked zone , 2009 .

[2]  P. Ciddor Refractive index of air: new equations for the visible and near infrared. , 1996, Applied optics.

[3]  Derek D. Lichti,et al.  Modeling Terrestrial Laser Scanner Data for Precise Structural Deformation Measurement , 2007 .

[4]  A. Niell Global mapping functions for the atmosphere delay at radio wavelengths , 1996 .

[5]  Derek D. Lichti,et al.  Error modelling, calibration and analysis of an AM–CW terrestrial laser scanner system , 2007 .

[6]  B. Edĺen The Refractive Index of Air , 1966 .

[7]  L. Mervart,et al.  Bernese GPS Software Version 5.0 , 2007 .

[8]  Zuheir Altamimi,et al.  Specifications for reference frame fixing in the analysis of a EUREF GPS campaign , 1998 .

[9]  G. Even-Tzur,et al.  Designing a geodetic-geodynamic network: a comparative study of data processing tools , 2004 .

[10]  Rainer Joeckel,et al.  Elektronische Entfernungs- und Richtungsmessung , 1989 .

[11]  P. Murdin Onsala Space Observatory , 2000 .

[12]  Norbert Pfeifer,et al.  DEFORMATION ANALYSIS OF A BORED TUNNEL BY MEANS OF TERRESTRIAL LASER SCANNING , 2006 .

[13]  Z. Altamimi,et al.  ITRF2005 : A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters , 2007 .

[14]  W. Caspary Concepts of network and deformation analysis , 1987 .

[15]  Goran Turk,et al.  Determination of Point Displacements in the Geodetic Network , 2006 .

[16]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[17]  Diego González-Aguilera,et al.  A New Approach for Structural Monitoring of Large Dams with a Three-Dimensional Laser Scanner , 2008, Sensors.

[18]  J. Śledziński,et al.  Surface kinematics in the Alpine–Carpathian–Dinaric and Balkan region inferred from a new multi-network GPS combination solution , 2009 .

[19]  R. Hill,et al.  Refractive index of air. 2. Group index. , 1999, Applied optics.

[20]  Norbert Pfeifer,et al.  On-the-job detection and correction of systematic cyclic distance measurement errors of terrestrial laser scanners , 2008 .

[21]  Zuheir Altamimi,et al.  INTERNATIONAL TERRESTRIAL REFERENCE FRAME. , 1996 .

[22]  T. Dixon,et al.  Noise in GPS coordinate time series , 1999 .

[23]  Alexander Bucksch,et al.  Error budget of terrestrial laser scanning: inuence of the incidence angle on the scan quality , 2007 .

[24]  Ben Gorte,et al.  Reducing the error in terrestrial laser scanning by optimizing the measurement set-up , 2008 .

[25]  Hojjat Adeli,et al.  A New Approach for Health Monitoring of Structures: Terrestrial Laser Scanning , 2007, Comput. Aided Civ. Infrastructure Eng..

[26]  Stuart Robson,et al.  Close Range Photogrammetry: Principles, Methods and Applications , 2006 .

[27]  M. Scaioni,et al.  STRUCTURAL MONITORING OF A LARGE DAM BY TERRESTRIAL LASER SCANNING , 2006 .

[28]  Markus Rothacher,et al.  The International GPS Service (IGS): An interdisciplinary service in support of Earth sciences , 1999 .