Integration efficiency for model reduction in micro-mechanical analyses
暂无分享,去创建一个
[1] Theodore Kim,et al. Optimizing cubature for efficient integration of subspace deformations , 2008, SIGGRAPH Asia '08.
[2] Siep Weiland,et al. Missing Point Estimation in Models Described by Proper Orthogonal Decomposition , 2004, IEEE Transactions on Automatic Control.
[3] D. Rovas,et al. Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .
[4] P. Steinmann,et al. A numerical study of different projection-based model reduction techniques applied to computational homogenisation , 2017, Computational Mechanics.
[5] Lawrence Sirovich,et al. Karhunen–Loève procedure for gappy data , 1995 .
[6] J. Schröder,et al. Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains , 1999 .
[7] Muruhan Rathinam,et al. A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..
[8] R. Hill. On constitutive macro-variables for heterogeneous solids at finite strain , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[9] G. Dunteman. Principal Components Analysis , 1989 .
[10] C. Miehe,et al. Computational micro-to-macro transitions of discretized microstructures undergoing small strains , 2002 .
[11] Ahmed K. Noor,et al. Reduced Basis Technique for Nonlinear Analysis of Structures , 1979 .
[12] C. Farhat,et al. Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy‐based mesh sampling and weighting for computational efficiency , 2014 .
[13] N. Nguyen,et al. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .
[14] E. A. de Souza Neto,et al. Computational methods for plasticity , 2008 .
[15] Pierre Ladevèze,et al. A PGD-based homogenization technique for the resolution of nonlinear multiscale problems , 2013 .
[16] Kenjiro Terada,et al. Nonlinear homogenization method for practical applications , 1995 .
[17] J. A. López del Val,et al. Principal Components Analysis , 2018, Applied Univariate, Bivariate, and Multivariate Statistics Using Python.
[18] Pierre Suquet,et al. Nonuniform transformation field analysis of elastic–viscoplastic composites , 2009 .
[19] J. Michel,et al. Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .
[20] Robert Davis Cook,et al. Finite Element Modeling for Stress Analysis , 1995 .
[21] J. Peraire,et al. A ‘best points’ interpolation method for efficient approximation of parametrized functions , 2008 .
[22] M. Caicedo,et al. Dimensional hyper-reduction of nonlinear finite element models via empirical cubature , 2017 .
[23] E. Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .
[24] Fpt Frank Baaijens,et al. An approach to micro-macro modeling of heterogeneous materials , 2001 .
[25] Michel Loève,et al. Probability Theory I , 1977 .
[26] J. Michel,et al. Nonuniform transformation field analysis , 2003 .
[27] van Jaw Hans Dommelen,et al. Investigation of the effects of the microstructure on the sound absorption performance of polymer foams using a computational homogenization approach , 2017 .
[28] P. Stern,et al. Automatic choice of global shape functions in structural analysis , 1978 .
[29] H. Hotelling. Analysis of a complex of statistical variables into principal components. , 1933 .
[30] V. G. Kouznetsova,et al. Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..
[31] Marc G. D. Geers,et al. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials , 2017, J. Comput. Phys..
[32] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[33] P. M. Squet. Local and Global Aspects in the Mathematical Theory of Plasticity , 1985 .
[34] J. Renard,et al. Etude de l'initiation de l'endommagement dans la matrice d'un matériau composite par une méthode d'homogénéisation , 1987 .
[35] E. B. Andersen,et al. Modern factor analysis , 1961 .
[36] M. Loève. Probability theory : foundations, random sequences , 1955 .
[37] Hamid Zahrouni,et al. Compressive failure of composites: A computational homogenization approach , 2015 .
[38] A. Huespe,et al. High-performance model reduction techniques in computational multiscale homogenization , 2014 .
[39] J. Chaboche,et al. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .
[40] K. Karhunen. Zur Spektraltheorie stochastischer prozesse , 1946 .
[41] G. Dvorak. Transformation field analysis of inelastic composite materials , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[42] V. Kouznetsova,et al. Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .
[43] W. Brekelmans,et al. Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling , 1998 .
[44] Danny C. Sorensen,et al. Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..
[45] Julien Yvonnet,et al. The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains , 2007, J. Comput. Phys..
[46] N. Kikuchi,et al. Preprocessing and postprocessing for materials based on the homogenization method with adaptive fini , 1990 .