Comprehensive Survey of the Hybrid Evolutionary Algorithms

Multiobjective evolutionary algorithm based on decomposition MOEA/D and an improved non-dominating sorting multiobjective genetic algorithm NSGA-II is two well known multiobjective evolutionary algorithms MOEAs in the field of evolutionary computation. This paper mainly reviews their hybrid versions and some other algorithms which are developed for solving multiobjective optimization problems MOPs. The mathematical formulation of a MOP and some basic definitions for tackling MOPs, including Pareto optimality, Pareto optimal set PS, Pareto front PF are provided in Section 1. Section 2 presents a brief introduction to hybrid MOEAs. The authors present literature review in subsections. Subsection 2.1 provides memetic multiobjective evolutionary algorithms. Subsection 2.2 presents the hybrid versions of well-known Pareto dominance based MOEAs. Subsection 2.4 summarizes some enhanced Versions of MOEA/D paradigm. Subsection 2.5 reviews some multimethod search approaches dealing optimization problems.

[1]  Hisao Ishibuchi,et al.  Adaptation of Scalarizing Functions in MOEA/D: An Adaptive Scalarizing Function-Based Multiobjective Evolutionary Algorithm , 2009, EMO.

[2]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[3]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[4]  Michiel Steyaert,et al.  Massively multi-topology sizing of analog integrated circuits , 2009, 2009 Design, Automation & Test in Europe Conference & Exhibition.

[5]  Qingfu Zhang,et al.  On the Performance of Metamodel Assisted MOEA/D , 2007, ISICA.

[6]  Andrzej Jaszkiewicz,et al.  Do multiple-objective metaheuristics deliver on their promises? A computational experiment on the set-covering problem , 2003, IEEE Trans. Evol. Comput..

[7]  Hisao Ishibuchi,et al.  Multi-objective genetic local search algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[8]  M. Senthil Arumugam,et al.  Novel Hybrid Approaches For Real Coded Genetic Algorithm To Compute The Optimal Control Of A Single Stage Hybrid Manufacturing Systems , 2007 .

[9]  Yuren Zhou,et al.  Multiobjective Optimization and Hybrid Evolutionary Algorithm to Solve Constrained Optimization Problems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[10]  Wali Khan Mashwani MOEA/D with DE and PSO: MOEA/D-DE+PSO , 2011, SGAI Conf..

[11]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[12]  Kalyanmoy Deb,et al.  A Local Search Based Evolutionary Multi-objective Optimization Approach for Fast and Accurate Convergence , 2008, PPSN.

[13]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[14]  R.H.C. Takahashi,et al.  Multiobjective Memetic Algorithms With Quadratic Approximation-Based Local Search for Expensive Optimization in Electromagnetics , 2008, IEEE Transactions on Magnetics.

[15]  Andrzej Jaszkiewicz,et al.  Performance of Multiple Objective Evolutionary Algorithms on a Distribution System Design Problem - Computational Experiment , 2001, EMO.

[16]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[17]  Qingfu Zhang,et al.  Comparison between MOEA/D and NSGA-II on the Multi-Objective Travelling Salesman Problem , 2009 .

[18]  Krassimir T. Atanassov,et al.  Genetic Algorithms Quality Assessment Implementing Intuitionistic Fuzzy Logic , 2014 .

[19]  P. Fleming,et al.  Convergence Acceleration Operator for Multiobjective Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[20]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[21]  Kay Chen Tan,et al.  A distributed Cooperative coevolutionary algorithm for multiobjective optimization , 2006, IEEE Transactions on Evolutionary Computation.

[22]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[23]  William J. Gibbs,et al.  Contemporary Research Methods and Data Analytics in the News Industry , 2015 .

[24]  Frederico G. Guimarães,et al.  Constraint quadratic approximation operator for treating equality constraints with genetic algorithms , 2005, 2005 IEEE Congress on Evolutionary Computation.

[25]  Nicoletta Sala,et al.  Complexity Science, Living Systems, and Reflexing Interfaces: New Models and Perspectives , 2012 .

[26]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[27]  Kay Chen Tan,et al.  A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[28]  Sharon E. Norris,et al.  Learning and Knowledge Creation under Perpetual Construction: A Complex Responsive Approach to Applied Business Research , 2015 .

[29]  Oliver Kramer,et al.  On the hybridization of SMS-EMOA and local search for continuous multiobjective optimization , 2009, GECCO '09.

[30]  Boris T. Polyak,et al.  Newton's method and its use in optimization , 2007, Eur. J. Oper. Res..

[31]  Hisao Ishibuchi,et al.  Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms , 2006, PPSN.

[32]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[33]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[34]  Ian Griffin,et al.  Hybrid multiobjective genetic algorithm with a new adaptive local search process , 2005, GECCO '05.

[35]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[36]  Kalyanmoy Deb,et al.  Hybridization of SBX based NSGA-II and sequential quadratic programming for solving multi-objective optimization problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[37]  Jasper A Vrugt,et al.  Improved evolutionary optimization from genetically adaptive multimethod search , 2007, Proceedings of the National Academy of Sciences.

[38]  Fabio Paternò,et al.  OPEN Platform for Migration of Interactive Services: Architecture and Evaluation , 2012, Int. J. Adapt. Resilient Auton. Syst..

[39]  Mike Dillon When Journalism Met the Internet: Old Media and New Media Greet the Online Public , 2015 .

[40]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[41]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[42]  Byung Ro Moon,et al.  Synergy of Multiple Crossover Operators in Genetic Algorithm , 2000, GECCO.

[43]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[44]  Yong Liu,et al.  An Efficient Multi-objective Evolutionary Algorithm: OMOEA-II , 2005, EMO.

[45]  Saúl Zapotecas Martínez,et al.  A Proposal to Hybridize Multi-Objective Evolutionary Algorithms with Non-gradient Mathematical Programming Techniques , 2008, PPSN.

[46]  Hisao Ishibuchi,et al.  Use of biased neighborhood structures in multiobjective memetic algorithms , 2009, Soft Comput..

[47]  Dmitry Mouromtsev,et al.  Grammar of Dynamic Knowledge for Collaborative Knowledge Engineering and Representation , 2015 .

[48]  T. Nishida,et al.  Multiple criteria decision problems with fuzzy domination structures , 1980 .

[49]  Hui Li,et al.  Evolutionary Multi-objective Simulated Annealing with adaptive and competitive search direction , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[50]  Fenio Annansingh,et al.  Experiences in Applying Mixed-Methods Approach in Information Systems Research , 2013 .

[51]  A. Messac,et al.  The normalized normal constraint method for generating the Pareto frontier , 2003 .

[52]  Carlos Alberto Conceição António,et al.  A study on synergy of multiple crossover operators in a hierarchical genetic algorithm applied to structural optimisation , 2009 .

[53]  Kalyanmoy Deb,et al.  AMGA: an archive-based micro genetic algorithm for multi-objective optimization , 2008, GECCO '08.

[54]  Taïcir Loukil,et al.  Multiple crossover genetic algorithm for the multiobjective traveling salesman problem , 2010, Electron. Notes Discret. Math..

[55]  Francisco Herrera,et al.  Hybrid crossover operators for real-coded genetic algorithms: an experimental study , 2005, Soft Comput..

[56]  M. N. Vrahatis,et al.  Particle swarm optimization method in multiobjective problems , 2002, SAC '02.

[57]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[58]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[59]  Panagiotis Adamidis,et al.  EvoWebReg: Web-Based Course Registration and Optimization of Student Personal Schedules with Evolutionary Algorithms , 2014, Int. J. Oper. Res. Inf. Syst..

[60]  Catherine A. Hansman Navigators on the Research Path: Teaching and Mentoring Student Qualitative Researchers , 2015 .

[61]  Kunio Shirahada,et al.  Sustainable Environmental Service - Knowledge Management: A Case of Bangkok MSW Management , 2015, Int. J. Knowl. Syst. Sci..

[62]  Ellen Boeren,et al.  Surveys as tools to measure qualitative and quantitative data , 2015 .

[63]  Qingfu Zhang,et al.  MOEA/D with NBI-style Tchebycheff approach for portfolio management , 2010, IEEE Congress on Evolutionary Computation.

[64]  Janet J. Fredericks Persistence of Knowledge across Layered Architectures , 2015 .

[65]  Victor C. X. Wang Handbook of Research on Scholarly Publishing and Research Methods , 2014 .

[66]  Kalyanmoy Deb,et al.  Performance assessment of the hybrid Archive-based Micro Genetic Algorithm (AMGA) on the CEC09 test problems , 2009, 2009 IEEE Congress on Evolutionary Computation.

[67]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[68]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[69]  P. Suganthan,et al.  Differential evolution algorithm with ensemble of populations for global numerical optimization , 2009 .

[70]  Andrzej Jaszkiewicz,et al.  On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment , 2002, IEEE Trans. Evol. Comput..

[71]  Ruhul A. Sarker,et al.  AMA: a new approach for solving constrained real-valued optimization problems , 2009, Soft Comput..

[72]  Kiyoshi Tanaka,et al.  A Hybrid Scalarization and Adaptive epsilon-Ranking Strategy for Many-Objective Optimization , 2010, PPSN.

[73]  Joshua D. Knowles,et al.  Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects , 2004 .

[74]  Alessandro Giuliani,et al.  Networks: A Sketchy Portrait of an Emergent Paradigm , 2013 .

[75]  Joshua D. Knowles,et al.  M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[76]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[77]  Frederico G. Guimarães,et al.  Local Search with Quadratic Approximations into Memetic Algorithms for Optimization with Multiple Criteria , 2008, Evolutionary Computation.

[78]  Veljko M. Milutinovic,et al.  Genetic Search Based on Multiple Mutations , 2000, Computer.

[79]  Kalyanmoy Deb,et al.  A hybrid multi-objective optimization procedure using PCX based NSGA-II and sequential quadratic programming , 2007, 2007 IEEE Congress on Evolutionary Computation.

[80]  Ruhul A. Sarker,et al.  A Combined MA-GA Approach for Solving Constrained Optimization Problems , 2007, 6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007).

[81]  Chun Chen,et al.  Multiple trajectory search for unconstrained/constrained multi-objective optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[82]  J. David Schaffer,et al.  An Adaptive Crossover Distribution Mechanism for Genetic Algorithms , 1987, ICGA.

[83]  Qingfu Zhang,et al.  An enhanced MOEA/D-DE and its application to multiobjective analog cell sizing , 2010, IEEE Congress on Evolutionary Computation.

[84]  Frederico G. Guimarães,et al.  Local search with quadratic approximation in Genetic Algorithms for expensive optimization problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[85]  Carlos A. Coello Coello,et al.  HCS: A New Local Search Strategy for Memetic Multiobjective Evolutionary Algorithms , 2010, IEEE Transactions on Evolutionary Computation.

[86]  J. Kiefer,et al.  Sequential minimax search for a maximum , 1953 .

[87]  Hisao Ishibuchi,et al.  Generalization of Dominance Relation-Based Replacement Rules for Memetic EMO Algorithms , 2003, GECCO.

[88]  George S. Dulikravich,et al.  Multi-Objective Hybrid Evolutionary Optimization with Automatic Switching Among Constituent Algorithms , 2008 .

[89]  Mario Köppen,et al.  Substitute Distance Assignments in NSGA-II for Handling Many-objective Optimization Problems , 2007, EMO.

[90]  Debora Cheney Big Data, Text Mining, and News Content: Where is the Big Data? , 2015 .

[91]  William M. Spears,et al.  Adapting Crossover in Evolutionary Algorithms , 1995, Evolutionary Programming.

[92]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[93]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[94]  Kyle Gibson,et al.  Web 2.0 and News 2.0: Utilizing Real-Time Analytics for Modern News Organizations , 2015 .

[95]  John A. W. McCall,et al.  A Novel Smart Multi-Objective Particle Swarm Optimisation Using Decomposition , 2010, PPSN.

[96]  Bin Li,et al.  Multi-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization , 2010, Memetic Comput..

[97]  Shengxiang Yang,et al.  A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems , 2009, Soft Comput..

[98]  Jean-Louis Ermine,et al.  Knowledge Crash and Knowledge Management Knowledge Crash and Knowledge Management , .

[99]  Ruhul A. Sarker,et al.  An agent-based memetic algorithm (AMA) for solving constrained optimazation problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[100]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[101]  Pascal Bouvry,et al.  Particle swarm optimization: Hybridization perspectives and experimental illustrations , 2011, Appl. Math. Comput..

[102]  Qingfu Zhang,et al.  Interactive MOEA/D for multi-objective decision making , 2011, GECCO '11.

[103]  Francisco Herrera,et al.  Multiple Crossover per Couple with Selection of the Two Best Offspring: An Experimental Study with the BLX-alpha Crossover Operator for Real-Coded Genetic Algorithms , 2002, IBERAMIA.

[104]  P. Siarry,et al.  Multiobjective Optimization: Principles and Case Studies , 2004 .

[105]  Qingfu Zhang,et al.  Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[106]  Peter Fox,et al.  Collaborative Knowledge in Scientific Research Networks , 2014 .

[107]  Ruhul A. Sarker,et al.  An Agent-based Memetic Algorithm (AMA) for nonlinear optimization with equality constraints , 2009, 2009 IEEE Congress on Evolutionary Computation.

[108]  Rajkumar Buyya,et al.  A pareto following variation operator for fast-converging multiobjective evolutionary algorithms , 2008, GECCO '08.

[109]  Bruce A. Robinson,et al.  Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces , 2009, IEEE Transactions on Evolutionary Computation.

[110]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[111]  Sanjoy Das,et al.  A Multiobjective Evolutionary-Simplex Hybrid Approach for the Optimization of Differential Equation Models of Gene Networks , 2008, IEEE Transactions on Evolutionary Computation.

[112]  F. Herrera,et al.  Hybrid crossover operators with multiple descendents for real-coded genetic algorithms: Combining neighborhood-based crossover operators , 2009 .

[113]  Chun Chen,et al.  Multiple trajectory search for multiobjective optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[114]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[115]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[116]  Kalyanmoy Deb,et al.  A Hybrid Multi-objective Evolutionary Approach to Engineering Shape Design , 2001, EMO.

[117]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[118]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[119]  Jing J. Liang,et al.  Problem Definitions for Performance Assessment of Multi-objective Optimization Algorithms , 2007 .

[120]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[121]  Hisao Ishibuchi,et al.  Effects of the Existence of Highly Correlated Objectives on the Behavior of MOEA/D , 2011, EMO.

[122]  W. B. Lee Systems Approaches to Knowledge Management, Transfer, and Resource Development , 2012 .

[123]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[124]  Saúl Zapotecas Martínez,et al.  Hybridizing an evolutionary algorithm with mathematical programming techniques for multi-objective optimization , 2008, GECCO '08.

[125]  John R. Turner,et al.  Developing Multilevel Models for Research , 2015 .

[126]  Naoki Hamada,et al.  Functional-Specialization Multi-Objective Real-Coded Genetic Algorithm: FS-MOGA , 2008, PPSN.

[127]  Qingfu Zhang,et al.  Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model , 2010, IEEE Transactions on Evolutionary Computation.

[128]  Byung Ro Moon,et al.  Exploiting synergies of multiple crossovers: initial studies , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[129]  Roberto Battiti,et al.  Brain-Computer Evolutionary Multiobjective Optimization: A Genetic Algorithm Adapting to the Decision Maker , 2010, IEEE Trans. Evol. Comput..

[130]  Ponnuthurai N. Suganthan,et al.  Ensemble differential evolution algorithm for CEC2011 problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[131]  Rajkumar Buyya,et al.  The Pareto-Following Variation Operator as an alternative approximation model , 2009, 2009 IEEE Congress on Evolutionary Computation.

[132]  Kalyanmoy Deb,et al.  Toward an Estimation of Nadir Objective Vector Using a Hybrid of Evolutionary and Local Search Approaches , 2010, IEEE Transactions on Evolutionary Computation.

[133]  Kalyanmoy Deb,et al.  Local search based evolutionary multi-objective optimization algorithm for constrained and unconstrained problems , 2009, 2009 IEEE Congress on Evolutionary Computation.

[134]  Zhongquan Guo,et al.  Hybrid Immune Evolutionary Algorithm based on multi-method , 2011, 2011 Seventh International Conference on Natural Computation.

[135]  Andrzej Jaszkiewicz,et al.  On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study , 2004, Eur. J. Oper. Res..

[136]  Taïcir Loukil,et al.  The Pareto fitness genetic algorithm: Test function study , 2007, Eur. J. Oper. Res..

[137]  Jörg Fliege,et al.  Newton's Method for Multiobjective Optimization , 2009, SIAM J. Optim..

[138]  Ajith Abraham,et al.  An improved Multiobjective Evolutionary Algorithm based on decomposition with fuzzy dominance , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[139]  Sanyou Zeng,et al.  An Orthogonal Multi-objective Evolutionary Algorithm for Multi-objective Optimization Problems with Constraints , 2004, Evolutionary Computation.

[140]  Qingfu Zhang,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 RM-MEDA: A Regularity Model-Based Multiobjective Estimation of , 2022 .

[141]  Tadahiko MURATA,et al.  Positive and negative combination effects of crossover and mutation operators in sequencing problems , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[142]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..