The Boolean closure of linear context-free languages

Closures of linear context-free languages under Boolean operations are investigated. The intersection closure and the complementation closure are incomparable. By closing these closures under further Boolean operations we obtain several new language families. The hierarchy obtained by such closures of closures is proper up to a certain level, where it collapses to the Boolean closure which, in turn, is incomparable with several closures of the family of context-free languages. The Boolean closure of the linear context-free languages is properly contained in the Boolean closure of the context-free languages. A characterization of a class of non-unary languages that cannot be expressed as a Boolean formula over the linear context-free languages is presented.

[1]  Oscar H. Ibarra,et al.  Characterizations and Computational Complexity of Systolic Trellis Automata , 1984, Theor. Comput. Sci..

[2]  Charles R. Dyer,et al.  One-Way Bounded Cellular Automata , 1980, Inf. Control..

[3]  Rohit Parikh,et al.  On Context-Free Languages , 1966, JACM.

[4]  Martin Kutrib,et al.  Unsolvability levels of operation problems for subclasses of context-free languages , 2005, Int. J. Found. Comput. Sci..

[5]  Detlef Wotschke,et al.  Degree-Languages: A New Concept of Acceptance , 1977, J. Comput. Syst. Sci..

[6]  Véronique Terrier,et al.  On Real Time One-Way Cellular Array , 1995, Theor. Comput. Sci..

[7]  Christian Choffrut,et al.  On real-time cellular automata and trellis automata , 2004, Acta Informatica.

[8]  Peter Weiner,et al.  An infinite hierarchy of intersections of context-free languages , 1973, Mathematical systems theory.

[9]  Lothar Schmitz,et al.  An Efficient Recognizer for the Boolean Closure of Context-Free Languages , 1991, Theor. Comput. Sci..

[10]  Gheorghe Paun,et al.  Regulated Rewriting in Formal Language Theory , 1989 .

[11]  Alvy Ray Smith Cellular Automata and Formal Languages , 1970, SWAT.

[12]  Detlef Wotschke,et al.  Nondeterminism and Boolean Operations in PDAs , 1978, J. Comput. Syst. Sci..

[13]  Alvy Ray Smith,et al.  Real-Time Language Recognition by One-Dimensional Cellular Automata , 1972, J. Comput. Syst. Sci..

[14]  Lucian Ilie,et al.  On strongly context-free languages , 2000, Discret. Appl. Math..

[15]  Seymour Ginsburg,et al.  The mathematical theory of context free languages , 1966 .

[16]  Detlef Wotschke,et al.  The Boolean Closures of the Deterministic and Nondeterministic Context-Free Languages , 1973, GI Jahrestagung.

[17]  Martin Kutrib,et al.  On time computability of functions in one-way cellular automata , 1998, Acta Informatica.

[18]  Tao Jiang,et al.  Parallel Parsing on a One-way Linear Array of Finite-State Machines , 1989, FSTTCS.

[19]  Detlef Wotschke,et al.  A characterization of boolean closures of families of languages , 1973, Automatentheorie und Formale Sprachen.

[20]  Alexander Okhotin Automaton Representation of Linear Conjunctive Languages , 2002, Developments in Language Theory.

[21]  Seymour Ginsburg,et al.  Deterministic Context Free Languages , 1966, Inf. Control..

[22]  Brenda S. Baker,et al.  Reversal-Bounded Multipushdown Machines , 1974, J. Comput. Syst. Sci..

[23]  Arto Salomaa,et al.  Formal languages , 1973, Computer science classics.

[24]  Martin Kutrib,et al.  Some Non-semi-decidability Problems for Linear and Deterministic Context-Free Languages , 2004, CIAA.

[25]  Alexander Okhotin Boolean grammars , 2004, Inf. Comput..