A P ] 1 1 A ug 2 01 9 STRONG DISSIPATIVITY OF GENERALIZED TIME-FRACTIONAL DERIVATIVES AND QUASI-LINEAR ( STOCHASTIC ) PARTIAL DIFFERENTIAL EQUATIONS
暂无分享,去创建一个
[1] Wei Liu,et al. Quasi-Linear (Stochastic) Partial Differential Equations with Time-Fractional Derivatives , 2017, SIAM J. Math. Anal..
[2] Zhen-Qing Chen. Time fractional equations and probabilistic representation , 2017, 1703.01739.
[3] Le Chen. NONLINEAR STOCHASTIC TIME-FRACTIONAL DIFFUSION EQUATIONS ON R: MOMENTS, HÖLDER REGULARITY AND INTERMITTENCY , 2017 .
[4] Yuri Luchko,et al. General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems , 2016 .
[5] Yimin Xiao,et al. L-Kuramoto-Sivashinsky SPDEs vs. time-fractional SPIDEs: exact continuity and gradient moduli, 1/2-derivative criticality, and laws , 2016, 1603.01172.
[6] Kristian Kirsch,et al. Methods Of Modern Mathematical Physics , 2016 .
[7] Le Chen,et al. Space-time fractional diffusions in Gaussian noisy environment , 2015, 1508.00252.
[8] Erkan Nane,et al. Asymptotic properties of some space-time fractional stochastic equations , 2015 .
[9] Sungbin Lim,et al. An $L_q(L_p)$-theory for the time fractional evolution equations with variable coefficients , 2015, 1505.00504.
[10] Alexis Vasseur,et al. A Parabolic Problem with a Fractional Time Derivative , 2015, 1501.07211.
[11] Vicente Vergara,et al. Optimal Decay Estimates for Time-Fractional and Other NonLocal Subdiffusion Equations via Energy Methods , 2013, SIAM J. Math. Anal..
[12] Erkan Nane,et al. Space-time fractional stochastic partial differential equations , 2014, 1409.7366.
[13] Zhen-Qing Chen,et al. Fractional time stochastic partial differential equations , 2014, 1404.1546.
[14] Viorel Barbu,et al. An operatorial approach to stochastic partial differential equations driven by linear multiplicative noise , 2014, 1402.4940.
[15] Benjamin Gess,et al. Random Attractors for Degenerate Stochastic Partial Differential Equations , 2012, 1206.2329.
[16] Wei Liu,et al. Local and global well-posedness of SPDE with generalized coercivity conditions☆ , 2012, 1202.0019.
[17] K. Diethelm,et al. Fractional Calculus: Models and Numerical Methods , 2012 .
[18] W. Marsden. I and J , 2012 .
[19] M. T. Cicero. FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .
[20] M. Meerschaert,et al. Stochastic Models for Fractional Calculus , 2011 .
[21] R. Herrmann. Fractional Calculus: An Introduction for Physicists , 2011 .
[22] K. Diethelm. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .
[23] Viorel Barbu,et al. Nonlinear Differential Equations of Monotone Types in Banach Spaces , 2010 .
[24] René L. Schilling,et al. Bernstein Functions: Theory and Applications , 2010 .
[25] Luisa Beghin,et al. Fractional diffusion equations and processes with randomly varying time. , 2011, 1102.4729.
[26] Teodor M. Atanackovic,et al. Time distributed-order diffusion-wave equation. I. Volterra-type equation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[27] Mark M. Meerschaert,et al. Fractional Cauchy problems on bounded domains , 2008, 0802.0673.
[28] Mark M. Meerschaert,et al. Brownian subordinators and fractional Cauchy problems , 2007, 0705.0168.
[29] Rico Zacher. Weak Solutions of Abstract Evolutionary Integro-Differential Equations in Hilbert Spaces , 2009 .
[30] Damian Craiem,et al. Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries , 2008, Physics in medicine and biology.
[31] Anatoly N. Kochubei,et al. Distributed-order calculus: An operator-theoretic interpretation , 2007, 0710.1710.
[32] R. Gorenflo,et al. Time-fractional Diffusion of Distributed Order , 2007, cond-mat/0701132.
[33] R. Gorenflo,et al. The Two Forms of Fractional Relaxation of Distributed Order , 2007, cond-mat/0701131.
[34] Feng-Yu Wang,et al. Stochastic generalized porous media and fast diffusion equations , 2006, math/0602369.
[35] R. Gorenflo,et al. FRACTIONAL RELAXATION OF DISTRIBUTED ORDER , 2006 .
[36] Mark M. Meerschaert,et al. Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.
[37] Volker G. Jakubowski,et al. On a nonlinear elliptic–parabolic integro-differential equation with L1-data , 2004 .
[38] J. Klafter,et al. Fractional Fokker-Planck equation for ultraslow kinetics , 2003, cond-mat/0301487.
[39] Stefan Samko,et al. INTEGRAL EQUATIONS OF THE FIRST KIND OF SONINE TYPE , 2003 .
[40] Mark M. Meerschaert,et al. STOCHASTIC SOLUTIONS FOR FRACTIONAL CAUCHY PROBLEMS , 2003 .
[41] Hans-Peter Scheffler,et al. Stochastic solution of space-time fractional diffusion equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[42] Carl F. Lorenzo,et al. Variable Order and Distributed Order Fractional Operators , 2002 .
[43] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[44] R. Wolpert. Lévy Processes , 2000 .
[45] J. Klafter,et al. Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck Equation Approach , 1999 .
[46] Wilhelm Stannat,et al. The theory of generalized Dirichlet forms and its applications in analysis and stochastics , 1999 .
[47] Zhi-Ming Ma,et al. Introduction to the theory of (non-symmetric) Dirichlet forms , 1992 .
[48] E. Zeidler. Nonlinear functional analysis and its applications , 1988 .
[49] S. Edwards,et al. The Theory of Polymer Dynamics , 1986 .
[50] F. Browder,et al. Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains. , 1977, Proceedings of the National Academy of Sciences of the United States of America.
[51] B. Ross,et al. The development of fractional calculus 1695–1900 , 1977 .
[52] Haim Brezis,et al. Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .
[53] M. Caputo. Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .
[54] M. Huggins. Viscoelastic Properties of Polymers. , 1961 .
[55] N. Sonine. Sur la généralisation d’une formule d’Abel , 1884 .