Enzyme electrodes based on organic metals

[1]  J. Kulys,et al.  NADH oxidation by quinone electron acceptors. , 1984, Biochimica et biophysica acta.

[2]  Philip N. Bartlett,et al.  An organic conductor electrode for the oxidation of NADH , 1984 .

[3]  J. Kulys,et al.  Oxidation of glucose oxidase from Penicillium vitale by one- and two-electron acceptors , 1983 .

[4]  The Development of High-Sensitive Enzyme Electrodes for the Determination of Aromatic Amines , 1983 .

[5]  J. Kulys,et al.  Kinetics of biocatalytic current generation , 1983 .

[6]  J. Kulys,et al.  Chronoamperometric stripping analysis following biocatalytic preconcentration , 1982 .

[7]  H. Hill,et al.  Factors influencing the electron-transfer rates of redox proteins. , 1982, Faraday discussions of the Chemical Society.

[8]  J. Kulys Development of new analytical systems based on biocatalysers , 1981 .

[9]  J. Kulys,et al.  Biocatalytic oxidation of glucose on the conductive charge transfer complexes , 1981 .

[10]  J. Kulys,et al.  401 — The development of bienzyme glucose electrodes , 1981 .

[11]  J. Kulys,et al.  The Development of New Analytical Systems Based on Biocatalysts , 1981 .

[12]  A. Naqui,et al.  Hydrogenase in organic metal , 1980 .

[13]  J. Kulys,et al.  Electron exchange between the enzyme active center and organic metal , 1980, FEBS letters.

[14]  J. Kulys,et al.  Reagentless lactate sensor based on cytochrome b2 , 1980 .

[15]  Juan I. Castillo,et al.  A polymer electrode with variable conductivity: polypyrrole , 1980 .