de Sitter duality and logarithmic decay of dark energy

We investigate infrared dynamics of four-dimensional Einstein gravity in de Sitter space. We set up a general framework to investigate dynamical scaling relations in quantum/classical gravitational theories. The conformal mode dependence of Einstein gravity is renormalized to the extent that general covariance is not manifest. We point out that the introduction of an inflaton is necessary as a counterterm. We observe and postulate a duality between quantum effects in Einstein gravity and classical evolutions in an inflation (or quintessence) model. The effective action of Einstein gravity can be constructed as an inflation model with manifest general covariance. We show that $g={G}_{N}{H}^{2}/\ensuremath{\pi}$: the only dimensionless coupling of the Hubble parameter ${H}^{2}$ and the Newton's coupling ${G}_{N}$ in Einstein gravity is screened by the infrared fluctuations of the conformal mode. We evaluate the one-loop $\ensuremath{\beta}$ function of $g$ with respect to the cosmic time $\mathrm{log}Ht$ as $\ensuremath{\beta}(g)=\ensuremath{-}(1/2){g}^{2}$, i.e., $g$ is asymptotically free toward the future. The exact $\ensuremath{\beta}$ function with the backreaction of $g$ reveals the existence of the ultraviolet fixed point. It indicates that the de Sitter expansion stared at the Planck scale with a minimal entropy $S=2$. We have identified the de Sitter entropy $1/g$ with the von Neumann entropy of the conformal zero mode. The former evolves according to the screening of $g$ and the Gibbons-Hawking formula. The latter is found to increase by diffusion in the stochastic process at the horizon in a consistent way. Our Universe is located very close to the fixed point $g=0$ with a large entropy. We discuss possible physical implications of our results such as logarithmic decay of dark energy.

[1]  D. Minic,et al.  Dark energy and string theory , 2019, Physics Letters B.

[2]  J. Nishimura,et al.  Complex Langevin analysis of the space-time structure in the Lorentzian type IIB matrix model , 2019, Journal of High Energy Physics.

[3]  H. Kitamoto,et al.  Entropy generation at the horizon diffuses the cosmological constant in 2D de Sitter space , 2019, Physical Review D.

[4]  Hirosi Ooguri,et al.  De Sitter Space and the Swampland , 2018, 1806.08362.

[5]  V. Motta,et al.  The Cardassian expansion revisited: constraints from updated Hubble parameter measurements and type Ia supernova data , 2017, 1706.09848.

[6]  R. Kojima,et al.  Non-Gaussian and loop effects of inflationary correlation functions in BRST formalism , 2017, 1704.08845.

[7]  David R. Silva,et al.  The DESI Experiment Part I: Science,Targeting, and Survey Design , 2016, 1611.00036.

[8]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[9]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[10]  Kiyoharu Kawana,et al.  Evidence of the big fix , 2014, 1405.1310.

[11]  H. Kitamoto,et al.  Time Dependent Couplings as Observables in de Sitter Space , 2014, 1402.2443.

[12]  H. Kitamoto,et al.  Soft gravitons screen couplings in de Sitter space , 2012, 1203.0391.

[13]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[14]  H. Kitamoto,et al.  Infra-red effects of Non-linear sigma model in de Sitter space , 2011, 1109.4892.

[15]  H. Kitamoto,et al.  Nonlinear sigma model in de Sitter space , 2010, 1012.5930.

[16]  A. Polyakov De Sitter space and eternity , 2007, 0709.2899.

[17]  S. Weinberg Quantum contributions to cosmological correlations. II. Can these corrections become large , 2006, hep-th/0605244.

[18]  S. Weinberg Quantum contributions to cosmological correlations , 2005, hep-th/0506236.

[19]  N. Tsamis,et al.  Stochastic quantum gravitational inflation , 2005, gr-qc/0505115.

[20]  R. Jackiw,et al.  Quantum relaxation of the cosmological constant , 2005, hep-th/0502215.

[21]  Andrei Linde,et al.  De Sitter vacua in string theory , 2003, hep-th/0301240.

[22]  L. Kofman,et al.  Inflation and de Sitter thermodynamics , 2002, hep-th/0212327.

[23]  V. Balasubramanian,et al.  Notes on de Sitter space and holography , 2002 .

[24]  J. Maldacena Non-Gaussian features of primordial fluctuations in single field inflationary models , 2002, astro-ph/0210603.

[25]  E. Linder Exploring the expansion history of the universe. , 2002, Physical review letters.

[26]  V. Balasubramanian,et al.  Exploring de Sitter space and holography , 2002, hep-th/0207245.

[27]  V. Balasubramanian,et al.  Mass, entropy and holography in asymptotically de Sitter spaces , 2001, hep-th/0110108.

[28]  A. Strominger The dS/CFT correspondence , 2001, hep-th/0106113.

[29]  M. Chevallier,et al.  ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.

[30]  P. Steinhardt,et al.  Cosmological imprint of an energy component with general equation of state , 1997, astro-ph/9708069.

[31]  N. Tsamis,et al.  Quantum gravity slows inflation , 1996, hep-ph/9602315.

[32]  H. Nielsen,et al.  Standard model criticality prediction top mass 173 ± 5 GeV and Higgs mass 135 ± 9 GeV , 1995, hep-ph/9511371.

[33]  Yokoyama,et al.  Equilibrium state of a self-interacting scalar field in the de Sitter background. , 1994, Physical review. D, Particles and fields.

[34]  M. Ninomiya,et al.  Ultraviolet stable fixed point and scaling relations in (2 + ϵ)-dimensional quantum gravity☆ , 1993, hep-th/9303123.

[35]  P. Peebles,et al.  Cosmological consequences of a rolling homogeneous scalar field. , 1988, Physical review. D, Particles and fields.

[36]  H. Vega,et al.  Field Theory, Quantum Gravity, and Strings , 1986 .

[37]  Andreas Albrecht,et al.  Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking , 1982 .

[38]  A. Polyakov Phase transitions and the Universe , 1982 .

[39]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[40]  A. A. Starobinskii,et al.  Spectrum of Relict Gravitational Radiation and the Early State of the Universe - JETP Lett. 30, 682 (1979) , 1979 .

[41]  S. Hawking,et al.  Action Integrals and Partition Functions in Quantum Gravity , 1977 .

[42]  H. Politzer,et al.  Reliable Perturbative Results for Strong Interactions , 1973 .

[43]  F. Wilczek,et al.  Ultraviolet Behavior of Non-Abelian Gauge Theories , 1973 .