Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist

[1]  B. Leander,et al.  Diversity and Evolutionary History of the Symbiontida (Euglenozoa) , 2018, Front. Ecol. Evol..

[2]  H. Mouritsen Long-distance navigation and magnetoreception in migratory animals , 2018, Nature.

[3]  D. Pignol,et al.  Accumulation and Dissolution of Magnetite Crystals in a Magnetically Responsive Ciliate , 2018, Applied and Environmental Microbiology.

[4]  D. Moreira,et al.  Symbiosis in eukaryotic evolution. , 2017, Journal of theoretical biology.

[5]  Gregory C Nordmann,et al.  Magnetoreception—A sense without a receptor , 2017, PLoS biology.

[6]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[7]  Alexandre Renaux,et al.  MicroScope in 2017: an expanding and evolving integrated resource for community expertise of microbial genomes , 2016, Nucleic Acids Res..

[8]  Ryan R. Wick,et al.  Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads , 2016, bioRxiv.

[9]  Luis Pedro Coelho,et al.  Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper , 2016, bioRxiv.

[10]  D. Schüler,et al.  Magnetosome biogenesis in magnetotactic bacteria , 2016, Nature Reviews Microbiology.

[11]  M. Farina,et al.  North-Seeking Magnetotactic Gammaproteobacteria in the Southern Hemisphere , 2016, Applied and Environmental Microbiology.

[12]  Harald R. Gruber-Vodicka,et al.  Environmental Breviatea harbor mutualistic Arcobacter epibionts , 2016, Nature.

[13]  Dmitry Antipov,et al.  hybridSPAdes: an algorithm for hybrid assembly of short and long reads , 2016, Bioinform..

[14]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[15]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[16]  D. Schüler,et al.  Polarity of bacterial magnetotaxis is controlled by aerotaxis through a common sensory pathway , 2014, Nature Communications.

[17]  A. T. Vasconcelos,et al.  Deciphering unusual uncultured magnetotactic multicellular prokaryotes through genomics , 2013, The ISME Journal.

[18]  R. Frankel,et al.  Phylogenetic significance of composition and crystal morphology of magnetosome minerals , 2013, Front. Microbiol..

[19]  H. Huber,et al.  Microbial syntrophy: interaction for the common good. , 2013, FEMS microbiology reviews.

[20]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[21]  W. Martin,et al.  Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes , 2012, Microbiology and Molecular Reviews.

[22]  N. Moran,et al.  Extreme genome reduction in symbiotic bacteria , 2011, Nature Reviews Microbiology.

[23]  R. Frankel,et al.  A Cultured Greigite-Producing Magnetotactic Bacterium in a Novel Group of Sulfate-Reducing Bacteria , 2011, Science.

[24]  B. Leander,et al.  Identity of epibiotic bacteria on symbiontid euglenozoans in O2-depleted marine sediments: evidence for symbiont and host co-evolution , 2011, The ISME Journal.

[25]  D. Schüler,et al.  Cultivation-independent characterization of 'Candidatus Magnetobacterium bavaricum' via ultrastructural, geochemical, ecological and metagenomic methods. , 2010, Environmental microbiology.

[26]  Alexis Criscuolo,et al.  BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments , 2010, BMC Evolutionary Biology.

[27]  Naoji Yubuki,et al.  Ultrastructure and molecular phylogenetic position of a novel euglenozoan with extrusive episymbiotic bacteria: Bihospites bacati n. gen. et sp. (Symbiontida) , 2010, BMC Microbiology.

[28]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[29]  N. Moran,et al.  The Dynamics and Time Scale of Ongoing Genomic Erosion in Symbiotic Bacteria , 2009, Science.

[30]  B. Leander,et al.  Ultrastructure and molecular phylogeny of Calkinsia aureus: cellular identity of a novel clade of deep-sea euglenozoans with epibiotic bacteria , 2009, BMC Microbiology.

[31]  K. Edwards,et al.  South-Seeking Magnetotactic Bacteria in the Northern Hemisphere , 2006, Science.

[32]  F. Widdel,et al.  Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes , 2006 .

[33]  M. Davison,et al.  Magnetoreception and its trigeminal mediation in the homing pigeon , 2004, Nature.

[34]  B. Leander,et al.  Symbiotic Innovation in the Oxymonad Streblomastix strix , 2004, The Journal of eukaryotic microbiology.

[35]  R. Frankel,et al.  Magnetosome formation in prokaryotes , 2004, Nature Reviews Microbiology.

[36]  F. Widdel,et al.  Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle , 1986, Archives of Microbiology.

[37]  James R. Cole,et al.  The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy , 2003, Nucleic Acids Res..

[38]  D. Schüler,et al.  The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense , 2002, International microbiology : the official journal of the Spanish Society for Microbiology.

[39]  R. Amann,et al.  Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes , 2001 .

[40]  Samuel S. Bowser,et al.  The Santa Barbara Basin is a symbiosis oasis , 2000, Nature.

[41]  John C. Montgomery,et al.  Structure and function of the vertebrate magnetic sense , 1997, Nature.

[42]  Harry R. Burton,et al.  The ultrastructure and systematic position of the euglenozoon Postgaardi mariagerensis, Fenchel et al , 1997 .

[43]  E. Stackebrandt,et al.  Nucleic acid techniques in bacterial systematics , 1991 .

[44]  Lynn Margulis,et al.  Symbiosis as a source of evolutionary innovation : speciation and morphogenesis , 1991 .

[45]  M. Sogin,et al.  The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. , 1988, Gene.

[46]  R. Frankel,et al.  Magnetite and magnetotaxis in algae. , 1986, Biophysical journal.

[47]  R. Blakemore,et al.  South-seeking magnetotactic bacteria in the Southern Hemisphere , 1980, Nature.