C O ] 2 5 Ju l 2 00 3 Planar Minimally Rigid Graphs and Pseudo-Triangulations

Pointed pseudo-triangulations are planar minimally rigid graphs embedded in the plane with pointed vertices (adjacent to an angle larger than π). In this paper we prove that the opposite statement is also true, namely that planar minimally rigid graphs always admit pointed embeddings, even under certain natural topological and combinatorial constraints. The proofs yield efficient embedding algorithms. They also provide to the best of our knowledge the first algorithmically effective result on graph embeddings with oriented matroid constraints other than convexity of faces. These constraints are described by combinatorial pseudo-triangulations, first defined and studied in this paper. Also of interest are our two proof techniques, one based on Henneberg inductive constructions from combinatorial rigidity theory, the other on a generalization of Tutte’s barycentric embeddings to directed graphs.

[1]  Lebrecht Henneberg,et al.  Die graphische Statik der Starren Systeme , 1911 .

[2]  H. Whitney 2-Isomorphic Graphs , 1933 .

[3]  W. T. Tutte Convex Representations of Graphs , 1960 .

[4]  William T. Tutte,et al.  A theory of 3-connected graphs , 1961 .

[5]  W. T. Tutte How to Draw a Graph , 1963 .

[6]  W. T. Tutte Connectivity in graphs , 1966 .

[7]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[8]  D. Rose,et al.  Generalized nested dissection , 1977 .

[9]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[10]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[11]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[12]  G. Rothe Two solvable cases of the Traveling Salesman Problem , 1988 .

[13]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[14]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[15]  Walter Whiteley,et al.  Plane Self Stresses and projected Polyhedra I: The Basic Pattem , 1993 .

[16]  Marek Chrobak,et al.  Convex drawings of graphs in two and three dimensions (preliminary version) , 1996, SCG '96.

[17]  Jürgen Richter-Gebert Realization Spaces of Polytopes , 1996 .

[18]  Michel Pocchiola,et al.  Topologically sweeping visibility complexes via pseudotriangulations , 1996, Discret. Comput. Geom..

[19]  Walter Whiteley,et al.  Some matroids from discrete applied geometry , 1996 .

[20]  Michel Pocchiola,et al.  Pseudo-triangulations: theory and applications , 1996, SCG '96.

[21]  Joseph O'Rourke,et al.  Vertex-edge pseudo-visibility graphs: characterization and recognition , 1997, SCG '97.

[22]  Ileana Streinu,et al.  Stretchability of star-like pseudo-visibility graphs , 1999, SCG '99.

[23]  Ileana Streinu,et al.  A combinatorial approach to planar non-colliding robot arm motion planning , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[24]  Günter Rote,et al.  Straightening polygonal arcs and convexifying polygonal cycles , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[25]  D. Jacobs,et al.  Protein flexibility predictions using graph theory , 2001, Proteins.

[26]  Stefan Felsner,et al.  Convex Drawings of Planar Graphs and the Order Dimension of 3-Polytopes , 2001, Order.

[27]  Bettina Speckmann,et al.  Tight degree bounds for pseudo-triangulations of points , 2001, CCCG.

[28]  Michel Pocchiola,et al.  Tutte's barycenter method applied to isotopies , 2003, Comput. Geom..

[29]  Leonidas J. Guibas,et al.  Deformable Free-Space Tilings for Kinetic Collision Detection† , 2002, Int. J. Robotics Res..

[30]  W. Whiteley Rigidity of Molecular Structures: Generic and Geometric Analysis , 2002 .

[31]  Sergei Bespamyatnikh Enumerating pseudo-triangulations in the plane. , 2002 .

[32]  Francisco Santos,et al.  Expansive Motions and the Polytope of Pointed Pseudo-Triangulations , 2002 .

[33]  Franz Aurenhammer,et al.  Convexity minimizes pseudo-triangulations , 2002, CCCG.

[34]  Günter Rote,et al.  Planar minimally rigid graphs and pseudo-triangulations , 2005, Comput. Geom..

[35]  Bettina Speckmann,et al.  The Zigzag Path of a Pseudo-Triangulation , 2003, WADS.

[36]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[37]  Tibor Jordán,et al.  A proof of Connelly's conjecture on 3-connected circuits of the rigidity matroid , 2003, J. Comb. Theory, Ser. B.

[38]  Bettina Speckmann,et al.  On the Number of Pseudo-Triangulations of Certain Point Sets , 2003, CCCG.

[39]  Bettina Speckmann,et al.  Allocating Vertex π-Guards in Simple Polygons via Pseudo-Triangulations , 2003, SODA '03.

[40]  A. Stephen Morse,et al.  Sensor and Network Topologies of Formations with distance-direction-angle constraints , 2003 .

[41]  Walter Whiteley,et al.  Rigidity and scene analysis , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[42]  Francisco Santos,et al.  The polytope of non-crossing graphs on a planar point set , 2004, ISSAC '04.

[43]  János Pach,et al.  Monotone drawings of planar graphs , 2002, J. Graph Theory.

[44]  Jack Snoeyink,et al.  Counting and enumerating pseudo-triangulations with the greedy flip algorithm ∗ , 2005 .