Additive Manufacturing of Metal Structures at the Micrometer Scale

Currently, the focus of additive manufacturing (AM) is shifting from simple prototyping to actual production. One driving factor of this process is the ability of AM to build geometries that are not accessible by subtractive fabrication techniques. While these techniques often call for a geometry that is easiest to manufacture, AM enables the geometry required for best performance to be built by freeing the design process from restrictions imposed by traditional machining. At the micrometer scale, the design limitations of standard fabrication techniques are even more severe. Microscale AM thus holds great potential, as confirmed by the rapid success of commercial micro‐stereolithography tools as an enabling technology for a broad range of scientific applications. For metals, however, there is still no established AM solution at small scales. To tackle the limited resolution of standard metal AM methods (a few tens of micrometers at best), various new techniques aimed at the micrometer scale and below are presently under development. Here, we review these recent efforts. Specifically, we feature the techniques of direct ink writing, electrohydrodynamic printing, laser‐assisted electrophoretic deposition, laser‐induced forward transfer, local electroplating methods, laser‐induced photoreduction and focused electron or ion beam induced deposition. Although these methods have proven to facilitate the AM of metals with feature sizes in the range of 0.1–10 µm, they are still in a prototype stage and their potential is not fully explored yet. For instance, comprehensive studies of material availability and material properties are often lacking, yet compulsory for actual applications. We address these items while critically discussing and comparing the potential of current microscale metal AM techniques.

[1]  T. K. Kundra,et al.  Additive Manufacturing Technologies , 2018 .

[2]  José María de Teresa Nanofabrication using focused electron and ion beams , 2018 .

[3]  Hwan-Sik Yoon,et al.  A Review on Electromechanical Devices Fabricated by Additive Manufacturing , 2017 .

[4]  Ryan Wicker,et al.  Multiprocess 3D printing for increasing component functionality , 2016, Science.

[5]  C. Emmelmann,et al.  Additive Manufacturing of Metals , 2016 .

[6]  P. Unwin,et al.  Write-Read 3D Patterning with a Dual-Channel Nanopipette. , 2016, ACS nano.

[7]  M. Wegener,et al.  Optical and Infrared Helical Metamaterials , 2016 .

[8]  Jiankang He,et al.  Micro/nanoscale electrohydrodynamic printing: from 2D to 3D. , 2016, Nanoscale.

[9]  Freek Bos,et al.  Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing , 2016, International Journal of Civil Engineering and Construction.

[10]  D. Keicher,et al.  Additive Manufacturing of Hybrid Circuits , 2016 .

[11]  P. Rack,et al.  Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition. , 2016, ACS nano.

[12]  Dimos Poulikakos,et al.  A Nanoprinted Model of Interstitial Cancer Migration Reveals a Link between Cell Deformability and Proliferation. , 2016, ACS nano.

[13]  Sergei V. Kalinin,et al.  Directing Matter: Toward Atomic-Scale 3D Nanofabrication. , 2016, ACS nano.

[14]  Mark A. Skylar-Scott,et al.  Laser-assisted direct ink writing of planar and 3D metal architectures , 2016, Proceedings of the National Academy of Sciences.

[15]  C. Körner,et al.  Additive manufacturing of metallic components by selective electron beam melting — a review , 2016 .

[16]  A. Fedorov,et al.  High Purity Tungsten Nanostructures via Focused Electron Beam Induced Deposition with Carrier Gas Assisted Supersonic Jet Delivery of Organometallic Precursors , 2016 .

[17]  Scott A. Mathews,et al.  Laser 3D micro-manufacturing , 2016 .

[18]  Patrice L. Baldeck,et al.  Two-photon fabrication of three-dimensional silver microstructures in microfluidic channels for volumetric surface-enhanced Raman scattering detection , 2016 .

[19]  Torsten Scherer,et al.  Fabrication of Conductive 3D Gold‐Containing Microstructures via Direct Laser Writing , 2016, Advanced materials.

[20]  Dimos Poulikakos,et al.  Printable Nanoscopic Metamaterial Absorbers and Images with Diffraction-Limited Resolution. , 2016, ACS applied materials & interfaces.

[21]  D. Poulikakos,et al.  Full-Spectrum Flexible Color Printing at the Diffraction Limit , 2016, 1609.08153.

[22]  G. Gazzadi,et al.  Fabrication of FeSi and Fe3Si compounds by electron beam induced mixing of [Fe/Si]2 and [Fe3/Si]2 multilayers grown by focused electron beam induced deposition , 2016, 1604.05536.

[23]  O. Kraft,et al.  Approaching theoretical strength in glassy carbon nanolattices. , 2016, Nature materials.

[24]  Elisabetta A. Matsumoto,et al.  Biomimetic 4D printing. , 2016, Nature materials.

[25]  R. Spolenak,et al.  Synthesis, structure and mechanical properties of ice-templated tungsten foams , 2016 .

[26]  S. Winter,et al.  Conductivity of laser printed copper structures limited by nano-crystal grain size and amorphous metal droplet shell , 2016 .

[27]  Q. Wang,et al.  Mechanism for the photoreduction of poly(vinylpyrrolidone) to HAuCl4 and the dominating saturable absorption of Au colloids. , 2016, Physical chemistry chemical physics : PCCP.

[28]  D. Poulikakos,et al.  Charge effects and nanoparticle pattern formation in electrohydrodynamic NanoDrip printing of colloids. , 2016, Nanoscale.

[29]  D. Sanvitto,et al.  Three-dimensional nanohelices for chiral photonics , 2016 .

[30]  Tomaso Zambelli,et al.  Template‐Free 3D Microprinting of Metals Using a Force‐Controlled Nanopipette for Layer‐by‐Layer Electrodeposition , 2016, Advanced materials.

[31]  James J. Yoo,et al.  A 3D bioprinting system to produce human-scale tissue constructs with structural integrity , 2016, Nature Biotechnology.

[32]  D. Poulikakos,et al.  Electrohydrodynamic NanoDrip Printing of High Aspect Ratio Metal Grid Transparent Electrodes , 2016 .

[33]  Z. Kotler,et al.  Printing of metallic 3D micro-objects by laser induced forward transfer. , 2016, Optics express.

[34]  André R Studart,et al.  Additive manufacturing of biologically-inspired materials. , 2016, Chemical Society reviews.

[35]  A. Sa’ar,et al.  Digital laser printing of metal/metal-oxide nano-composites with tunable electrical properties , 2016, Nanotechnology.

[36]  Jing-Chie Lin,et al.  Fabrication of 3D Microstructure by Localized Electrochemical Deposition with Image Feedback Distance Control and Five-Axis Motion Platform , 2016 .

[37]  David C. Dunand,et al.  Metallic Architectures from 3D‐Printed Powder‐Based Liquid Inks , 2015 .

[38]  A. Sa’ar,et al.  Laser jetting of femto-liter metal droplets for high resolution 3D printed structures , 2015, Scientific Reports.

[39]  A. Fedorov,et al.  Rapid Electron Beam Writing of Topologically Complex 3D Nanostructures Using Liquid Phase Precursor. , 2015, Nano letters.

[40]  Erik H. Waller,et al.  Three‐Dimensional μ‐Printing: An Enabling Technology , 2015 .

[41]  L. Dominici,et al.  Tailoring chiro-optical effects by helical nanowire arrangement. , 2015, Nanoscale.

[42]  J. Vörös,et al.  Local surface modification via confined electrochemical deposition with FluidFM , 2015 .

[43]  M. Wegener,et al.  Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography. , 2015, Optics letters.

[44]  A. Sa’ar,et al.  Laser Transfer of Metals and Metal Alloys for Digital Microfabrication of 3D Objects. , 2015, Small.

[45]  J. Rogers,et al.  Mechanisms, Capabilities, and Applications of High-Resolution Electrohydrodynamic Jet Printing. , 2015, Small.

[46]  D. Poulikakos,et al.  Wedge Waveguides and Resonators for Quantum Plasmonics , 2015, Nano letters.

[47]  C. Feldmann,et al.  Polyol synthesis of nanoparticles: status and options regarding metals, oxides, chalcogenides, and non-metal elements , 2015 .

[48]  Jun Yeob Song,et al.  High‐Resolution Printing of 3D Structures Using an Electrohydrodynamic Inkjet with Multiple Functional Inks , 2015, Advanced materials.

[49]  Won Suk Chang,et al.  Electrodeposition-based 3D Printing of Metallic Microarchitectures with Controlled Internal Structures. , 2015, Small.

[50]  P. Rack,et al.  Inert Gas Enhanced Laser-Assisted Purification of Platinum Electron-Beam-Induced Deposits. , 2015, ACS applied materials & interfaces.

[51]  Chao Sun,et al.  Toward 3D Printing of Pure Metals by Laser‐Induced Forward Transfer , 2015, Advanced materials.

[52]  J. D. de Teresa,et al.  Focused Electron and Ion Beam Induced Deposition on Flexible and Transparent Polycarbonate Substrates. , 2015, ACS nano.

[53]  A. Sa’ar,et al.  Digital laser printing of aluminum micro-structure on thermally sensitive substrates , 2015 .

[54]  P. Rack,et al.  Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition , 2015, Beilstein journal of nanotechnology.

[55]  Nicholas A. Charipar,et al.  Laser-induced forward transfer of silver nanopaste for microwave interconnects , 2015 .

[56]  E. Mazur,et al.  One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix , 2015, Nanotechnology.

[57]  Julia R. Greer,et al.  Ultra-strong architected Cu meso-lattices , 2015 .

[58]  C. Gspan,et al.  Post-growth purification of Co nanostructures prepared by focused electron beam induced deposition , 2015, Nanotechnology.

[59]  M. Takai,et al.  Nano electron source fabricated by beam-induced deposition and its unique feature , 2015 .

[60]  D. Sanvitto,et al.  Nanoscale 3D Chiral Plasmonic Helices with Circular Dichroism at Visible Frequencies , 2015 .

[61]  E. Bertagnolli,et al.  Direct-write deposition and focused-electron-beam-induced purification of gold nanostructures. , 2015, ACS applied materials & interfaces.

[62]  Ian Gibson,et al.  Additive manufacturing technologies : 3D printing, rapid prototyping, and direct digital manufacturing , 2015 .

[63]  P. Bártolo,et al.  Micro Additive manufacturing using ulra short laser pulses , 2015 .

[64]  K. Sugioka,et al.  Femtosecond laser three-dimensional micro- and nanofabrication , 2014 .

[65]  F. Iwata,et al.  Three-dimensional microfabrication using local electrophoresis deposition and a laser trapping technique. , 2014, Optics express.

[66]  C. W. Hagen,et al.  The future of focused electron beam-induced processing , 2014 .

[67]  E. Bertagnolli,et al.  Free-Standing Magnetic Nanopillars for 3D Nanomagnet Logic , 2014, ACS applied materials & interfaces.

[68]  Harish Bhaskaran,et al.  Additive nanomanufacturing — A review , 2014 .

[69]  D. Poulikakos,et al.  Near-field light design with colloidal quantum dots for photonics and plasmonics. , 2014, Nano letters.

[70]  D. Byun,et al.  Metal-mesh based transparent electrode on a 3-D curved surface by electrohydrodynamic jet printing , 2014 .

[71]  D. Therriault,et al.  Three-dimensional printing of freeform helical microstructures: a review. , 2014, Nanoscale.

[72]  Steve Simon,et al.  Options for additive rapid prototyping methods (3D printing) in MEMS technology , 2014 .

[73]  P. Rack,et al.  Rapid and Highly Compact Purification for Focused Electron Beam Induced Deposits: A Low Temperature Approach Using Electron Stimulated H2O Reactions , 2014 .

[74]  G. Kothleitner,et al.  Fundamental resolution limits during electron-induced direct-write synthesis. , 2014, ACS applied materials & interfaces.

[75]  William E. Frazier,et al.  Metal Additive Manufacturing: A Review , 2014, Journal of Materials Engineering and Performance.

[76]  Salvador Pané,et al.  Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition. , 2014, Small.

[77]  Ryan B. Wicker,et al.  3D Printing multifunctionality: structures with electronics , 2014 .

[78]  Min Gu,et al.  Fabrication methods of 3D periodic metallic nano/microstructures for photonics applications , 2014 .

[79]  D. Poulikakos,et al.  Dielectrophoretic bending of directly printed free-standing ultra-soft nanowires , 2014 .

[80]  Xue‐Qing Liu,et al.  Fabrication of microelectrodes based on precursor doped with metal seeds by femtosecond laser direct writing. , 2014, Optics letters.

[81]  David Klenerman,et al.  Electrochemical nanoprobes for single-cell analysis. , 2014, ACS nano.

[82]  M. Wegener,et al.  On three-dimensional dilational elastic metamaterials , 2013, 1310.3719.

[83]  H. Wu,et al.  Focused helium ion beam deposited low resistivity cobalt metal lines with 10 nm resolution: implications for advanced circuit editing , 2014, Journal of Materials Science: Materials in Electronics.

[84]  M. Tschopp,et al.  Atomic-scale analysis of liquid-gallium embrittlement of aluminum grain boundaries , 2013, 1312.2160.

[85]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[86]  S. Warisawa,et al.  Growth of ultra-long free-space-nanowire by the real-time feedback control of the scanning speed on focused-ion-beam chemical vapor deposition , 2013 .

[87]  X. Duan,et al.  Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction , 2013 .

[88]  T. Schaedler,et al.  Toward Lighter, Stiffer Materials , 2013, Science.

[89]  Scott A. Mathews,et al.  High-speed video study of laser-induced forward transfer of silver nano-suspensions , 2013 .

[90]  M. Tiwari,et al.  A novel 3D integrated platform for the high-resolution study of cell migration plasticity. , 2013, Macromolecular bioscience.

[91]  Sam S. Yoon,et al.  Effects of pulsing frequency on characteristics of electrohydrodynamic inkjet using micro-Al and nano-Ag particles , 2013 .

[92]  R. Cowburn,et al.  Three dimensional magnetic nanowires grown by focused electron-beam induced deposition , 2013, Scientific Reports.

[93]  Doyoung Byun,et al.  Invisible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing , 2013 .

[94]  P. Unwin,et al.  Meniscus confined fabrication of multidimensional conducting polymer nanostructures with scanning electrochemical cell microscopy (SECCM). , 2013, Chemical communications.

[95]  A. Terfort,et al.  Fabrication and electrical transport properties of binary Co-Si nanostructures prepared by focused electron beam-induced deposition , 2013 .

[96]  K. Dunn,et al.  Direct-write 3D nanolithography at cryogenic temperatures , 2013, Nanotechnology.

[97]  Scott T. Dunham,et al.  High-field chemistry of organometallic precursors for direct-write of germanium and silicon nanostructures , 2013 .

[98]  J. Fischer,et al.  Three‐dimensional optical laser lithography beyond the diffraction limit , 2013 .

[99]  Hermann Seitz,et al.  A review on 3D micro-additive manufacturing technologies , 2012, The International Journal of Advanced Manufacturing Technology.

[100]  O. Hellwig,et al.  Rapid preparation of electron beam induced deposition Co magnetic force microscopy tips with 10 nm spatial resolution. , 2012, The Review of scientific instruments.

[101]  Shoji Takeuchi,et al.  Wall-less liquid pathways formed with three-dimensional microring arrays , 2012 .

[102]  C. Schuh,et al.  Design of Stable Nanocrystalline Alloys , 2012, Science.

[103]  D. Poulikakos,et al.  Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets , 2012, Nature Communications.

[104]  Kyung Hyun Choi,et al.  Fine-resolution patterning of copper nanoparticles through electrohydrodynamic jet printing , 2012 .

[105]  A. Frangakis,et al.  Room temperature L10 phase transformation in binary CoPt nanostructures prepared by focused-electron-beam-induced deposition , 2012, Nanotechnology.

[106]  L. Belova,et al.  Pattern shape control for heat treatment purification of electron-beam-induced deposition of gold from the Me2Au(acac) precursor. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[107]  Jürgen Köhler,et al.  Physical model for the laser induced forward transfer process , 2012 .

[108]  Eric Mazur,et al.  Three-dimensional silver nanostructure fabrication through multiphoton photoreduction , 2012, Other Conferences.

[109]  L. Murr,et al.  Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies , 2012 .

[110]  A. Frangakis,et al.  Binary Pt-Si nanostructures prepared by focused electron-beam-induced deposition. , 2011, ACS nano.

[111]  C. W. Hagen,et al.  Parallel electron-beam-induced deposition using a multi-beam scanning electron microscope , 2011 .

[112]  Sam S. Yoon,et al.  Electrohydrodynamic pulsed-inkjet characteristics of various inks containing aluminum particles , 2011 .

[113]  A. Orlov,et al.  Novel method for fabrication of nanoscale single-electron transistors: Electron beam induced deposition of Pt and atomic layer deposition of tunnel barriers , 2011 .

[114]  K. Berggren,et al.  Electron-beam-induced deposition of 3-nm-half-pitch patterns on bulk Si , 2011 .

[115]  V. Grillo,et al.  Focused Electron Beam Deposition of Nanowires from Cobalt Tricarbonyl Nitrosyl (Co(CO)3NO) Precursor , 2011 .

[116]  B. Nelson,et al.  The effect of saccharine on the localized electrochemical deposition of Cu-rich Cu–Ni microcolumns , 2011 .

[117]  A. Fedorov,et al.  Inert gas jets for growth control in electron beam induced deposition , 2011 .

[118]  G. Leuchs,et al.  The Direct Writing of Plasmonic Gold Nanostructures by Electron‐Beam‐Induced Deposition , 2011, Advanced materials.

[119]  Kyung Hyun Choi,et al.  Drop-on-Demand Direct Printing of Colloidal Copper Nanoparticles by Electrohydrodynamic Atomization , 2011 .

[120]  B. Thiel,et al.  Focused electron beam-induced deposition at cryogenic temperatures , 2011 .

[121]  A J Birnbaum,et al.  Fabrication and Response of Laser-Printed Cavity-Sealing Membranes , 2011, Journal of Microelectromechanical Systems.

[122]  Kawal Sawhney,et al.  A planar refractive x-ray lens made of nanocrystalline diamond , 2010 .

[123]  C. W. Hagen,et al.  Multibeam scanning electron microscope: Experimental results , 2010 .

[124]  Alberto Piqué,et al.  Three‐Dimensional Printing of Interconnects by Laser Direct‐Write of Silver Nanopastes , 2010, Advanced materials.

[125]  A. Rockett,et al.  Direct writing of sub-5 nm hafnium diboride metallic nanostructures. , 2010, ACS nano.

[126]  A. I. Kuznetsov,et al.  Laser fabrication of 2D and 3D metal nanoparticle structures and arrays. , 2010, Optics express.

[127]  P. M. Ferreira,et al.  High-speed and drop-on-demand printing with a pulsed electrohydrodynamic jet , 2010 .

[128]  Yong‐Lai Zhang,et al.  Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. , 2010, Small.

[129]  Min-Feng Yu,et al.  Meniscus-Confined Three-Dimensional Electrodeposition for Direct Writing of Wire Bonds , 2010, Science.

[130]  H. Miyazoe,et al.  Improving the metallic content of focused electron beam-induced deposits by a scanning electron microscope integrated hydrogen-argon microplasma generator , 2010 .

[131]  Alberto Piqué,et al.  Nanoporosity-induced effects on Ag-based metallic nano-inks for non-lithographic fabrication , 2010 .

[132]  A. Gomez,et al.  The role of electric charge in microdroplets impacting on conducting surfaces , 2010 .

[133]  Yi-wei Chen,et al.  Localized electrochemical deposition of micrometer copper columns by pulse plating , 2010 .

[134]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[135]  C. W. Hagen,et al.  Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective , 2009, Nanotechnology.

[136]  K. Mølhave,et al.  Dose and energy dependence of mechanical properties of focused electron-beam-induced pillar deposits from Cu(C5HF6O2)2 , 2009, Nanotechnology.

[137]  A. Mancuso,et al.  Resonant magnetic scattering with soft x-ray pulses from a free-electron laser operating at 1.59 nm , 2009 .

[138]  F. Iwata,et al.  Local electrophoresis deposition of nanomaterials assisted by a laser trapping technique , 2009, Nanotechnology.

[139]  Tomaso Zambelli,et al.  FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. , 2009, Nano letters.

[140]  Satoshi Kawata,et al.  3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. , 2009, Small.

[141]  John A. Rogers,et al.  Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes , 2009, Science.

[142]  T. Majima,et al.  Light as a construction tool of metal nanoparticles : Synthesis and mechanism , 2009 .

[143]  C. Schuh,et al.  Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys , 2009 .

[144]  Romain Quidant,et al.  Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. , 2009, Lab on a chip.

[145]  G. Kothleitner,et al.  The influence of beam defocus on volume growth rates for electron beam induced platinum deposition , 2008, Nanotechnology.

[146]  Alberlto Piqué Digital Microfabrication by Laser Decal Transfer , 2008 .

[147]  O. Tabata,et al.  LIGA and its applications , 2008 .

[148]  D. Macfarlane,et al.  Why use Ionic Liquids for Electrodeposition , 2008 .

[149]  Patrik Hoffmann,et al.  Gas-assisted focused electron beam and ion beam processing and fabrication , 2008 .

[150]  H. Steinrück,et al.  Electron-beam-induced deposition in ultrahigh vacuum: lithographic fabrication of clean iron nanostructures. , 2008, Small.

[151]  Patrice L. Baldeck,et al.  Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium(II) dye as photoinitiator , 2008 .

[152]  M. Boman,et al.  Growth of normally-immiscible materials (NIMs), binary alloys, and metallic fibers by hyperbaric laser chemical vapor deposition , 2008 .

[153]  Robby Ebert,et al.  Laser micro sintering: A new method to generate metal and ceramic parts of high resolution with sub-micrometer powder , 2008 .

[154]  Shoji Maruo,et al.  Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix. , 2008, Optics express.

[155]  M. Hampden‐Smith,et al.  Overview of Metal CVD , 2007 .

[156]  G. Boero,et al.  Focused electron beam induced deposition of nickel , 2007 .

[157]  P. Rack,et al.  In situ probing of the growth and morphology in electron-beam-induced deposited nanostructures , 2007, Nanotechnology.

[158]  P. Yeh,et al.  Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition , 2007 .

[159]  John A Rogers,et al.  High-resolution electrohydrodynamic jet printing. , 2007, Nature materials.

[160]  Chad A Mirkin,et al.  The power of the pen: development of massively parallel dip-pen nanolithography. , 2007, ACS nano.

[161]  A. G. Cullis,et al.  Low temperature electrical characterisation of tungsten nano-wires fabricated by electron and ion beam induced chemical vapour deposition , 2007 .

[162]  Abhijit P. Suryavanshi,et al.  Electrochemical fountain pen nanofabrication of vertically grown platinum nanowires , 2007 .

[163]  J. Cesarano,et al.  Direct Ink Writing of Three‐Dimensional Ceramic Structures , 2006 .

[164]  J. A. Lewis Direct Ink Writing of 3D Functional Materials , 2006 .

[165]  S. Kawata,et al.  Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye , 2006 .

[166]  Kazuhiro Kanda,et al.  Evaluation of Field Electron Emitter Fabricated Using Focused-Ion-Beam Chemical Vapor Deposition , 2006 .

[167]  R. Weemaes,et al.  Purification of platinum and gold structures after electron-beam-induced deposition , 2006 .

[168]  M. Abourida,et al.  Electron range effects in focused electron beam induced deposition of 3D nanostructures , 2006 .

[169]  Kazuhiro Kanda,et al.  Three-dimensional rotor fabrication by focused-ion-beam chemical-vapor-deposition , 2006 .

[170]  Dong-Ju Lee,et al.  Structuring of micro line conductor using electro-hydrodynamic printing of a silver nanoparticle suspension , 2006 .

[171]  S. Kawata,et al.  Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure , 2006 .

[172]  Abhijit P. Suryavanshi,et al.  Probe-based electrochemical fabrication of freestanding Cu nanowire array , 2006 .

[173]  M. Abourida,et al.  Electrodes for carbon nanotube devices by focused electron beam induced deposition of gold , 2005 .

[174]  C. W. Hagen,et al.  Spatial resolution limits in electron-beam-induced deposition , 2005 .

[175]  Shao-pu Liu,et al.  A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[176]  D. Schwartz,et al.  Electrochemical printing: software reconfigurable electrochemical microfabrication , 2005 .

[177]  C. W. Hagen,et al.  Approaching the resolution limit of nanometer-scale electron beam-induced deposition. , 2005, Nano letters.

[178]  J. Je,et al.  Localized Electrochemical Deposition of Copper Monitored Using Real‐Time X‐ray Microradiography , 2005 .

[179]  P. Hoffmann,et al.  Influence of the beam scan direction during focused electron beam induced deposition of 3D nanostructures , 2005 .

[180]  P. Hoffmann,et al.  Periodic structure formation by focused electron-beam-induced deposition , 2004 .

[181]  C. O'connor,et al.  Recent advances in the liquid-phase syntheses of inorganic nanoparticles. , 2004, Chemical reviews.

[182]  F. Iwata,et al.  Nanometer-Scale Metal Plating Using a Scanning Shear-Force Microscope with an Electrolyte-Filled Micropipette Probe , 2004 .

[183]  Raa A. Said,et al.  PUBLISHER'S NOTE: Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modelling , 2004 .

[184]  K. Furuya,et al.  Application of transmission electron microscopes to nanometre‐sized fabrication by means of electron beam‐induced deposition , 2004, Journal of microscopy.

[185]  Takayuki Hoshino,et al.  Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition , 2003 .

[186]  Jonathan P. Bird,et al.  Nonlinear current-voltage characteristics of Pt nanowires and nanowire transistors fabricated by electron-beam deposition , 2003 .

[187]  D. Grier A revolution in optical manipulation , 2003, Nature.

[188]  D. Kauzlarick,et al.  Fundamentals of microfabrication, the science of miniaturization, 2nd edition [Book Review] , 2003, IEEE Engineering in Medicine and Biology Magazine.

[189]  Shinji Matsui,et al.  Three-dimensional nanostructure fabrication by focused-Ion-beam chemical vapor deposition , 2000, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[190]  서동표,et al.  가시화를 통한 Gas Injection System에 관한 연구 , 2002 .

[191]  Seth R. Marder,et al.  Laser and Electron‐Beam Induced Growth of Nanoparticles for 2D and 3D Metal Patterning , 2002 .

[192]  R. Blum,et al.  Two-dimensional photonic crystals produced by additive nanolithography with electron beam-induced deposition act as filters in the infrared , 2001 .

[193]  Chad E. Duty,et al.  Laser chemical vapour deposition: materials, modelling, and process control , 2001 .

[194]  E. Kapon,et al.  Focused electron beam induced deposition of gold , 2000 .

[195]  M. Moats,et al.  The effect of copper, acid, and temperature on the diffusion coefficient of cupric ions in simulated electrorefining electrolytes , 2000 .

[196]  G. Thornell,et al.  High Resolution 3D Microstructures Made by Localized Electrodeposition of Nickel , 2000 .

[197]  J. Melngailis,et al.  Lateral growth of focused ion beam deposited platinum for stencil mask repair , 1999 .

[198]  G. Reiss,et al.  Low energy electron beam decomposition of metalorganic precursors with a scanning tunneling microscope at ambient atmosphere , 1999 .

[199]  A. Jaworek,et al.  Classification of the Modes of Ehd Spraying , 1999 .

[200]  H. Pierson The CVD of Metals , 1999 .

[201]  W. Schubert,et al.  The Element Tungsten , 1999 .

[202]  G. Whitesides,et al.  Microfabrication, Microstructures and Microsystems , 1998 .

[203]  J. Wendelken,et al.  Magnetic nanostructures fabricated by scanning tunneling microscope-assisted chemical vapor deposition , 1997 .

[204]  H. Barnes Thixotropy—a review , 1997 .

[205]  M. Wanke,et al.  Laser Rapid Prototyping of Photonic Band-Gap Microstructures , 1997, Science.

[206]  T. I. Quickenden,et al.  Toward a Reliable Value for the Diffusion Coefficient of Cupric Ion in Aqueous Solution , 1996 .

[207]  Ian W. Hunter,et al.  Three-dimensional microfabrication by localized electrochemical deposition , 1996 .

[208]  Andrew D. Kent,et al.  Growth of High Aspect Ratio Nanometer-Scale Magnets with Chemical Vapor Deposition and Scanning Tunneling Microscopy , 1993, Science.

[209]  Tamás Szörényi,et al.  Ar+ laser-induced forward transfer (LIFT): a novel method for micrometer-size surface patterning , 1993 .

[210]  D. Bäuerle,et al.  LCVD of tungsten microstructures on quartz , 1992 .

[211]  M. Ohring The Materials Science of Thin Films , 1991 .

[212]  R. Newnham,et al.  Electrical Resistivity of Composites , 1990 .

[213]  C. Thompson,et al.  Focused ion beam induced deposition of low‐resistivity gold films , 1989 .

[214]  S. Namba,et al.  An x‐ray photoelectron spectroscopy study on ion beam induced deposition of tungsten using WF6 , 1989 .

[215]  F. R. Foulkes,et al.  Diffusion Coefficients for Copper (II) in Aqueous Cupric Sulfate‐Sulfuric Acid Solutions , 1989 .

[216]  S. Schiller,et al.  Thermal Surface Modification by Electron Beam High-Speed Scanning , 1988 .

[217]  F. J. Adrian,et al.  Metal deposition from a supported metal film using an excimer laser , 1986 .

[218]  M. H. Gelchinski,et al.  Laser‐enhanced jet plating: A method of high‐speed maskless patterning , 1983 .

[219]  D. Bäuerle,et al.  Laser induced chemical vapor deposition of Ni by decomposition of Ni(CO)4 , 1983 .

[220]  R. Alkire,et al.  High‐Speed Selective Electroplating with Single Circular Jets , 1982 .

[221]  D. R. Turner Modern techniques for electroplating gold contacts , 1982 .

[222]  Robert Lee Melcher,et al.  Laser enhanced electroplating and maskless pattern generation , 1979 .

[223]  Derek B. Ingham,et al.  Laminar boundary layer on an impulsively started rotating sphere , 1979 .

[224]  R. Walker,et al.  Effect of ultrasonic agitation on some properties of electrodeposits , 1973 .

[225]  R. Doremus Optical Properties of Small Gold Particles , 1964 .

[226]  Gerald Oster,et al.  Photoreduction of Metal Ions by Visible Light1 , 1959 .