Classical logic, continuation semantics and abstract machines
暂无分享,去创建一个
[1] Michel Parigot,et al. Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.
[2] Matthias Felleisen,et al. A Syntactic Theory of Sequential Control , 1987, Theor. Comput. Sci..
[3] J. Roger Hindley,et al. To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .
[4] Philippe de Groote,et al. An environment machine for the λμ-calculus , 1998, Mathematical Structures in Computer Science.
[5] John C. Reynolds. Definitional Interpreters for Higher-Order Programming Languages , 1998, High. Order Symb. Comput..
[6] Michael J. Fischer,et al. Lambda-calculus schemata , 1993, LISP Symb. Comput..
[7] Matthias Felleisen,et al. Control operators, the SECD-machine, and the λ-calculus , 1987, Formal Description of Programming Concepts.
[8] John C. Reynolds,et al. Definitional Interpreters for Higher-Order Programming Languages , 1972, ACM '72.
[9] Peter Lee,et al. Call-by-need and continuation-passing style , 1994, LISP Symb. Comput..
[10] Andrew W. Appel,et al. Compiling with Continuations , 1991 .
[11] Eugenio Moggi,et al. Notions of Computation and Monads , 1991, Inf. Comput..
[12] Harold T. Hodes,et al. The | lambda-Calculus. , 1988 .
[13] Timothy G. Griffin,et al. A formulae-as-type notion of control , 1989, POPL '90.
[14] C.-H. Luke Ong,et al. A Generic Strong Normalization Argument: Application to the Calculus of Constructions , 1993, CSL.
[15] Gordon D. Plotkin,et al. Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..
[16] P. J. Freyd. Applications of Categories in Computer Science: Remarks on algebraically compact categories , 1992 .
[17] Pierre-Louis Curien,et al. An Abstract Framework for Environment Machines , 1991, Theor. Comput. Sci..
[18] Robert Hieb,et al. The Revised Report on the Syntactic Theories of Sequential Control and State , 1992, Theor. Comput. Sci..
[19] Andrew M. Pitts,et al. Computational Adequacy via "Mixed" Inductive Definitions , 1993, MFPS.
[20] Amr Sabry,et al. Reasoning about programs in continuation-passing style , 1992, LFP '92.
[21] Alan Jeffrey,et al. A fully abstract semantics for concurrent graph reduction , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.
[22] Martín Abadi,et al. Explicit substitutions , 1989, POPL '90.
[23] Martin Hofmann,et al. Continuation models are universal for lambda-mu-calculus , 1997, LICS 1997.
[24] Matthias Felleisen,et al. The calculi of lambda-nu-cs conversion: a syntactic theory of control and state in imperative higher-order programming languages , 1987 .