A new Leapfrog scheme for rotational motion in 3D
暂无分享,去创建一个
[1] David Fincham,et al. Leapfrog Rotational Algorithms , 1992 .
[2] Elena Celledoni,et al. The Exact Computation of the Free Rigid Body Motion and Its Use in Splitting Methods , 2008, SIAM J. Sci. Comput..
[3] A. Saccon,et al. A numerical test of long‐time stability for rigid body integrators , 2012 .
[4] P. Cundall,et al. A bonded-particle model for rock , 2004 .
[5] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[6] C. Mariotti,et al. Lamb's problem with the lattice model Mka3D , 2007 .
[7] Scott M. Johnson,et al. Quaternion‐based rigid body rotation integration algorithms for use in particle methods , 2008 .
[8] S. Buss. Accurate and efficient simulation of rigid-body rotations , 2000 .
[9] C.G.J. Jacobi. Sur la rotation d'un corps. Extrait d'une lettre adressée à l'académie des sciences de Paris. , 1850 .
[10] A. Müller. Approximation of finite rigid body motions from velocity fields , 2010 .
[11] C. Mariotti,et al. An energy-preserving Discrete Element Method for elastodynamics , 2009, 0907.2202.
[12] P. Cundall,et al. A discrete numerical model for granular assemblies , 1979 .
[13] Anatoly B Kolomeisky,et al. Recursive Taylor Series Expansion Method for Rigid-Body Molecular Dynamics. , 2011, Journal of chemical theory and computation.
[15] I. Omelyan. A New Leapfrog Integrator of Rotational Motion. The Revised Angular-Momentum Approach , 1999, physics/9901025.
[16] R. Olness,et al. Two‐dimensional computer studies of crystal stability and fluid viscosity , 1974 .
[17] L. Verlet. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .