Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing.

[1]  E. Pearce,et al.  Metabolic orchestration of the wound healing response. , 2021, Cell metabolism.

[2]  M. Hatzoglou,et al.  Adaptation to mitochondrial stress requires CHOP-directed tuning of ISR , 2021, Science Advances.

[3]  J. C. Love,et al.  Longitudinal transcriptomics define the stages of myeloid activation in the living human brain after intracerebral hemorrhage , 2021, Science Immunology.

[4]  D. Nomura,et al.  Mitohormesis reprograms macrophage metabolism to enforce tolerance , 2020, Nature Metabolism.

[5]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[6]  J. Teodoro,et al.  Mitohormesis , 2021, Mitochondrial Physiology and Vegetal Molecules.

[7]  P. Walter,et al.  The integrated stress response: From mechanism to disease , 2020, Science.

[8]  J. Riemer,et al.  A salvage pathway maintains highly functional respiratory complex I , 2020, Nature Communications.

[9]  V. Velagapudi,et al.  Fibroblast Growth Factor 21 Drives Dynamics of Local and Systemic Stress Responses in Mitochondrial Myopathy with mtDNA Deletions. , 2019, Cell metabolism.

[10]  B. Lambrecht,et al.  Ribosome-Targeting Antibiotics Impair T Cell Effector Function and Ameliorate Autoimmunity by Blocking Mitochondrial Protein Synthesis , 2019, bioRxiv.

[11]  B. Ren,et al.  Metabolic regulation of gene expression by histone lactylation , 2019, Nature.

[12]  A. Akhtar,et al.  MAPCap allows high-resolution detection and differential expression analysis of transcription start sites , 2019, Nature Communications.

[13]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[14]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[15]  Joerg M. Buescher,et al.  Inflammatory macrophage dependence on NAD+ salvage is a consequence of reactive oxygen species–mediated DNA damage , 2019, Nature Immunology.

[16]  R. Medzhitov,et al.  An evolutionary perspective on immunometabolism , 2019, Science.

[17]  S. C. Huang,et al.  Mitochondrial Membrane Potential Regulates Nuclear Gene Expression in Macrophages Exposed to Prostaglandin E2 , 2018, Immunity.

[18]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[19]  Paul Martin,et al.  Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression , 2018, The EMBO journal.

[20]  Luke Zappia,et al.  Clustering trees: a visualization for evaluating clusterings at multiple resolutions , 2018, bioRxiv.

[21]  Erika L. Pearce,et al.  Mitochondrial Dynamics at the Interface of Immune Cell Metabolism and Function. , 2018, Trends in immunology.

[22]  P. Loke,et al.  Recent Advances in Type-2-Cell-Mediated Immunity: Insights from Helminth Infection. , 2017, Immunity.

[23]  I. Atanassov,et al.  Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals , 2017, eLife.

[24]  Robert W. Williams,et al.  Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals , 2017, The Journal of cell biology.

[25]  Y. Kong,et al.  Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells , 2017, Science.

[26]  Paul Martin,et al.  Inflammation and metabolism in tissue repair and regeneration , 2017, Science.

[27]  M. Colonna,et al.  Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation. , 2016, Immunity.

[28]  R. Xavier,et al.  Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages , 2016, Cell.

[29]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[30]  Bruce A. Corliss,et al.  Macrophages: An Inflammatory Link Between Angiogenesis and Lymphangiogenesis , 2016, Microcirculation.

[31]  E. Pearce,et al.  Immunometabolism governs dendritic cell and macrophage function , 2016, The Journal of experimental medicine.

[32]  A. Regev,et al.  Mitochondrial dysfunction remodels one-carbon metabolism in human cells , 2015, eLife.

[33]  W. Bloch,et al.  Interleukin-4 Receptor α Signaling in Myeloid Cells Controls Collagen Fibril Assembly in Skin Repair. , 2015, Immunity.

[34]  F. Villarroya,et al.  Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation. , 2015, American journal of physiology. Endocrinology and metabolism.

[35]  Abhishek K. Jha,et al.  Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. , 2015, Immunity.

[36]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[37]  Maxim N. Artyomov,et al.  Cell-intrinsic lysosomal lipolysis is essential for macrophage alternative activation , 2014, Nature Immunology.

[38]  E. Rugarli,et al.  Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart. , 2014, Cell metabolism.

[39]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[40]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[41]  T. Wynn,et al.  Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths , 2013, Nature Reviews Immunology.

[42]  Liang Zheng,et al.  Succinate is an inflammatory signal that induces IL-1β through HIF-1α , 2013, Nature.

[43]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[44]  A. Nagy,et al.  CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. , 2012, Blood.

[45]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[46]  O. Feron,et al.  Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice , 2012, Angiogenesis.

[47]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[48]  T. Wynn,et al.  Protective and pathogenic functions of macrophage subsets , 2011, Nature Reviews Immunology.

[49]  F. Finkelman,et al.  Local Macrophage Proliferation, Rather than Recruitment from the Blood, Is a Signature of TH2 Inflammation , 2011, Science.

[50]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[51]  J. Rathmell,et al.  Cutting Edge: Distinct Glycolytic and Lipid Oxidative Metabolic Programs Are Essential for Effector and Regulatory CD4+ T Cell Subsets , 2011, The Journal of Immunology.

[52]  Pedro M. Valero-Mora,et al.  ggplot2: Elegant Graphics for Data Analysis , 2010 .

[53]  Daniel Rico,et al.  Substrate Fate in Activated Macrophages: A Comparison between Innate, Classic, and Alternative Activation , 2010, The Journal of Immunology.

[54]  Werner Müller,et al.  Differential Roles of Macrophages in Diverse Phases of Skin Repair , 2010, The Journal of Immunology.

[55]  Serban Nacu,et al.  Fast and SNP-tolerant detection of complex variants and splicing in short reads , 2010, Bioinform..

[56]  T. Koh,et al.  Selective and specific macrophage ablation is detrimental to wound healing in mice. , 2009, The American journal of pathology.

[57]  Michael P. Murphy,et al.  How mitochondria produce reactive oxygen species , 2008, The Biochemical journal.

[58]  V. Sumbayev,et al.  LPS‐induced Toll‐like receptor 4 signalling triggers cross‐talk of apoptosis signal‐regulating kinase 1 (ASK1) and HIF‐1α protein , 2008 .

[59]  S. Werner,et al.  Wound repair and regeneration , 1994, Nature.

[60]  T. K. Hunt,et al.  Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. , 2007, Antioxidants & redox signaling.

[61]  H. Fehling,et al.  Faithful activation of an extra‐bright red fluorescent protein in “knock‐in” Cre‐reporter mice ideally suited for lineage tracing studies , 2007, European journal of immunology.

[62]  D. Greaves,et al.  Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. , 2006, Cell metabolism.

[63]  D. Ron,et al.  CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. , 2004, Genes & development.

[64]  F. Brombacher,et al.  Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. , 2004, Immunity.

[65]  W. Reith,et al.  Conditional gene targeting in macrophages and granulocytes using LysMcre mice , 1999, Transgenic Research.

[66]  V. Luria,et al.  Maternally expressed PGK-Cre transgene as a tool for early and uniform activation of the Cre site-specific recombinase , 1998, Transgenic Research.

[67]  Odilo Trabold,et al.  Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing , 2003, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[68]  N. Chandel,et al.  Reactive Oxygen Species Generated at Mitochondrial Complex III Stabilize Hypoxia-inducible Factor-1α during Hypoxia , 2000, The Journal of Biological Chemistry.