Comment on “Evaluation of a physically based quasi-linear and a conceptually based nonlinear Muskingum methods” [J. Hydrol., 546, 437–449, 10.1016/j.jhydrol.2017.01.025]

Summary Perumal et al. (2017) compared the performances of the variable parameter McCarthy-Muskingum (VPMM) model of Perumal and Price (2013) and the nonlinear Muskingum (NLM) model of Gill (1978) using hypothetical inflow hydrographs in an artificial channel. As input parameters, first model needs the initial condition, upstream boundary condition, Manning’s roughness coefficient, length of the routing reach, cross-sections of the river reach and the bed slope, while the latter one requires the initial condition, upstream boundary condition and the hydrologic parameters (three parameters which can be calibrated using flood hydrographs of the upstream and downstream sections). The VPMM model was examined by available Manning’s roughness values, whereas the NLM model was tested in both calibration and validation steps. As final conclusion, Perumal et al. (2017) claimed that the NLM model should be retired from the literature of the Muskingum model. While the author’s intention is laudable, this comment examines some important issues in the subject matter of the original study.

[1]  Z. Geem Parameter Estimation of the Nonlinear Muskingum Model Using Parameter-Setting-Free Harmony Search , 2011 .

[2]  Lin Qiu,et al.  Estimation of Nonlinear Muskingum Model Parameter Using Differential Evolution , 2012 .

[4]  Gurhan Gurarslan,et al.  Evaluation of a physically based quasi-linear and a conceptually based nonlinear Muskingum methods. , 2017 .

[5]  Reza Barati,et al.  Discussion: New and improved four-parameter non-linear Muskingum model , 2014 .

[6]  Mark W. Smith Roughness in the Earth Sciences , 2014 .

[7]  Reza Barati,et al.  Analysis of dynamic wave model for flood routing in natural rivers , 2012 .

[8]  Donald W. Knight,et al.  The concept of roughness in fluvial hydraulics and its formulation in 1D, 2D and 3D numerical simulation models , 2008 .

[9]  Reza Barati,et al.  Parameter Estimation of Nonlinear Muskingum Models Using Nelder-Mead Simplex Algorithm , 2011 .

[10]  S. Easa Evaluation of nonlinear Muskingum model with continuous and discontinuous exponent parameters , 2015 .

[11]  Reza Barati,et al.  Application of excel solver for parameter estimation of the nonlinear Muskingum models , 2013 .

[12]  Z. Geem,et al.  Parameter Estimation of the Nonlinear Muskingum Flood-Routing Model Using a Hybrid Harmony Search Algorithm , 2013 .

[14]  A. Vatankhah Evaluation of Explicit Numerical Solution Methods of the Muskingum Model , 2014 .

[15]  Liang-Cheng Chang,et al.  Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model , 2009 .

[16]  M. A. Gill Flood routing by the Muskingum method , 1978 .

[17]  M. Perumal,et al.  A fully mass conservative variable parameter McCarthy-Muskingum method: Theory and verification , 2013 .

[18]  F. Henderson Open channel flow , 1966 .

[19]  Vujica Yevjevich,et al.  Muskingum-Cunge Method with Variable Parameters , 1978 .

[20]  Omid Bozorg Haddad,et al.  Application of a Hybrid Optimization Method in Muskingum Parameter Estimation , 2015 .