Robust Filtering and Smoothing with Gaussian Processes

We propose a principled algorithm for robust Bayesian filtering and smoothing in nonlinear stochastic dynamic systems when both the transition function and the measurement function are described by non-parametric Gaussian process (GP) models. GPs are gaining increasing importance in signal processing, machine learning, robotics, and control for representing unknown system functions by posterior probability distributions. This modern way of system identification is more robust than finding point estimates of a parametric function representation. Our principled filtering/smoothing approach for GP dynamic systems is based on analytic moment matching in the context of the forward-backward algorithm. Our numerical evaluations demonstrate the robustness of the proposed approach in situations where other state-of-the-art Gaussian filters and smoothers can fail.

[1]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[2]  H. Witsenhausen A Counterexample in Stochastic Optimum Control , 1968 .

[3]  Hiroaki Kobayashi,et al.  Controllability under decentralized information structure , 1978 .

[4]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Masao Ikeda,et al.  Decentralized control of large scale systems , 1989 .

[6]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[7]  Joe H. Chow,et al.  A reliable coordinated decentralized control system design , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[8]  J. V. Medanic,et al.  On the Design of Reliable Control Systems , 1990, 1990 American Control Conference.

[9]  E. Davison,et al.  Decentralized stabilization and pole assignment for general proper systems , 1990 .

[10]  J. Medanic,et al.  Decentralized H∞ norm bounding control for discrete-time systems , 1992, 1992 American Control Conference.

[11]  M. Aldeen,et al.  A Balancing Realization Approach to Decentralized Control of Interconnected Systems , 1992, Singapore International Conference on Intelligent Control and Instrumentation [Proceedings 1992].

[12]  P. J. Campo,et al.  Achievable closed-loop properties of systems under decentralized control: conditions involving the steady-state gain , 1994, IEEE Trans. Autom. Control..

[13]  V. Manousiouthakis,et al.  Best achievable decentralized performance , 1995, IEEE Trans. Autom. Control..

[14]  Guisheng Zhai,et al.  Decentralized H^∞ Control of Large-Scale Systems , 1995 .

[15]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[16]  Christopher G. Atkeson,et al.  A comparison of direct and model-based reinforcement learning , 1997, Proceedings of International Conference on Robotics and Automation.

[17]  Mohammad Aldeen,et al.  Stabilization of decentralized control systems , 1997 .

[18]  Zoubin Ghahramani,et al.  Learning Nonlinear Dynamical Systems Using an EM Algorithm , 1998, NIPS.

[19]  Zoubin Ghahramani,et al.  A Unifying Review of Linear Gaussian Models , 1999, Neural Computation.

[20]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[21]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[22]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[23]  S. Roweis,et al.  Learning Nonlinear Dynamical Systems Using the Expectation–Maximization Algorithm , 2001 .

[24]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[25]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[26]  U. Hanebeck Optimal filtering of nonlinear systems based on pseudo gaussian densities , 2003 .

[27]  Agathe Girard,et al.  Propagation of uncertainty in Bayesian kernel models - application to multiple-step ahead forecasting , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[28]  J. Kocijan,et al.  Predictive control with Gaussian process models , 2003, The IEEE Region 8 EUROCON 2003. Computer as a Tool..

[29]  Agathe Girard,et al.  Adaptive, Cautious, Predictive control with Gaussian Process Priors , 2003 .

[30]  A.I. Zecevic,et al.  Robust decentralized exciter control with linear feedback , 2004, IEEE Transactions on Power Systems.

[31]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[32]  A. Doucet,et al.  Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.

[33]  Sanjay Lall,et al.  A Characterization of Convex Problems in Decentralized Control$^ast$ , 2005, IEEE Transactions on Automatic Control.

[34]  Eduardo I. Silva,et al.  Time-domain performance limitations arising from decentralized architectures and their relationship to the RGA , 2005 .

[35]  Edward J. Davison,et al.  Structural modification of systems using discretization and generalized sampled-data hold functions , 2006, Autom..

[36]  Vinay Kariwala,et al.  Fundamental limitation on achievable decentralized performance , 2007, Autom..

[37]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[38]  Simo Särkkä,et al.  Unscented Rauch-Tung-Striebel Smoother , 2008, IEEE Trans. Autom. Control..

[39]  Duy Nguyen-Tuong,et al.  Local Gaussian Process Regression for Real Time Online Model Learning , 2008, NIPS.

[40]  Dieter Fox,et al.  GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Iain Murray,et al.  Introduction to Gaussian Processes , 2008 .

[42]  Uwe D. Hanebeck,et al.  Analytic moment-based Gaussian process filtering , 2009, ICML '09.

[43]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[44]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[45]  Javad Lavaei A new decentralization technique for interconnected systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[46]  Marc Peter Deisenroth,et al.  Efficient reinforcement learning using Gaussian processes , 2010 .

[47]  Carl E. Rasmussen,et al.  Learning to Control a Low-Cost Manipulator using Data-Efficient Reinforcement Learning , 2011, Robotics: Science and Systems.

[48]  Carl E. Rasmussen,et al.  PILCO: A Model-Based and Data-Efficient Approach to Policy Search , 2011, ICML.

[49]  M. Deisenroth,et al.  A general perspective on Gaussian filtering and smoothing: Explaining current and deriving new algorithms , 2011, Proceedings of the 2011 American Control Conference.

[50]  Javad Lavaei,et al.  Decentralized Implementation of Centralized Controllers for Interconnected Systems , 2012, IEEE Transactions on Automatic Control.

[51]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .