Visualization of evolving social networks using actor‐level and community‐level trajectories

In recent years we witnessed an impressive advance in the social networks field, which became a "hot" topic and a focus of considerable attention. Also, the development of methods that focus on the analysis and understanding of the evolution of data are gaining momentum. In this paper we present an approach to visualize the evolution of dynamic social networks by using Tucker decomposition and the concept of temporal trajectory. Our visualization strategy is based on the definition of trajectories, both at the node-level and at the community-level, in a bidimensional space that preserves its structural properties. Furthermore, this approach can be used to identify similar actors, or communities of actors, by comparing the shape and position of trajectories. To illustrate the proposed approach we conduct a case study using a set of temporal friendship networks.

[1]  H. Kiers,et al.  Three-mode principal components analysis: choosing the numbers of components and sensitivity to local optima. , 2000, The British journal of mathematical and statistical psychology.

[2]  Joao Pedro Nogueira,et al.  Determinantes do empreendedorismo académico na área das ciências da vida em Portugal , 2011 .

[3]  Vipin Kumar UNDERSTANDING COMPLEX DATASETS: DATA MINING WITH MATRIX DECOMPOSITIONS , 2006 .

[4]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[5]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[6]  Rasmus Bro,et al.  The N-way Toolbox for MATLAB , 2000 .

[7]  Philippe Castagliola,et al.  On the Readability of Graphs Using Node-Link and Matrix-Based Representations: A Controlled Experiment and Statistical Analysis , 2005, Inf. Vis..

[8]  Bülent Yener,et al.  Unsupervised Multiway Data Analysis: A Literature Survey , 2009, IEEE Transactions on Knowledge and Data Engineering.

[9]  Eamonn Keogh Exact Indexing of Dynamic Time Warping , 2002, VLDB.

[10]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[11]  Chris Arney,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World (Easley, D. and Kleinberg, J.; 2010) [Book Review] , 2013, IEEE Technology and Society Magazine.

[12]  Philip S. Yu,et al.  Incremental tensor analysis: Theory and applications , 2008, TKDD.

[13]  P. Bonacich Power and Centrality: A Family of Measures , 1987, American Journal of Sociology.

[14]  Paolo Giordani,et al.  Three-Way Component Analysis Using the R Package ThreeWay , 2014 .

[15]  Pieter M. Kroonenberg,et al.  Three-mode principal component analysis : theory and applications , 1983 .

[16]  Jimeng Sun,et al.  MultiVis: Content-Based Social Network Exploration through Multi-way Visual Analysis , 2009, SDM.

[17]  A. Barabasi,et al.  Quantifying social group evolution , 2007, Nature.

[18]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[19]  Elísio Brandão,et al.  The Impact of Working Capital Management Upon Companies’ Profitability: Evidence from European Companies , 2011 .

[20]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[21]  Osmar R. Zaïane,et al.  A Framework for Analyzing Dynamic Social Networks , 2010 .

[22]  João Gama,et al.  A framework to monitor clusters evolution applied to economy and finance problems , 2012, Intell. Data Anal..

[23]  L. K. Hansen,et al.  Automatic relevance determination for multi‐way models , 2009 .

[24]  I. Mechelen,et al.  Three-way component analysis: principles and illustrative application. , 2001, Psychological methods.

[25]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[26]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[27]  Niklas Elmqvist,et al.  TimeMatrix: Analyzing Temporal Social Networks Using Interactive Matrix-Based Visualizations , 2010, Int. J. Hum. Comput. Interact..

[28]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[29]  Heidrun Schumann,et al.  Visualizing time-oriented data - A systematic view , 2007, Comput. Graph..

[30]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[31]  Derek Greene,et al.  Tracking the Evolution of Communities in Dynamic Social Networks , 2010, 2010 International Conference on Advances in Social Networks Analysis and Mining.

[32]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[34]  Age K. Smilde,et al.  Three-way analyses problems and prospects , 1992 .

[35]  J. Levin Three-mode factor analysis. , 1965, Psychological bulletin.

[36]  Ben Shneiderman,et al.  A Task Taxonomy for Network Evolution Analysis , 2014, IEEE Transactions on Visualization and Computer Graphics.

[37]  R. Bro,et al.  Centering and scaling in component analysis , 2003 .

[38]  Paula Sarmento,et al.  Foreign Presence and Market Concentration: The Case of Portuguese Manufacturing Industries , 2012 .

[39]  A. Crofts,et al.  Structure and function of the -complex of , 1992 .

[40]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[41]  Joana Filipa Lourenço Garcia,et al.  The Impact of Working capital management upon companies , 2012 .

[42]  John Skvoretz,et al.  Node centrality in weighted networks: Generalizing degree and shortest paths , 2010, Soc. Networks.

[43]  P. Kroonenberg Applied Multiway Data Analysis , 2008 .

[44]  H. Kiers Towards a standardized notation and terminology in multiway analysis , 2000 .

[45]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[46]  E. David,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World , 2010 .

[47]  Ricardo Biscaia,et al.  Spatial Competition and Firms’ Location Decisions under Cost Uncertainty , 2012 .

[48]  João Gama,et al.  MEC - Monitoring Clusters' Transitions , 2010, STAIRS.

[49]  Daniel A. McFarland,et al.  Dynamic Network Visualization1 , 2005, American Journal of Sociology.

[50]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[51]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[52]  Eugene E. Tyrtyshnikov,et al.  Linear algebra for tensor problems , 2009, Computing.

[53]  Paulo B. Vasconcelos,et al.  Dynamic political effects in a neoclassic growth model with healthcare and creative activities , 2015 .

[54]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[55]  Robert Sabatier,et al.  The ACT (STATIS method) , 1994 .

[56]  Tom A. B. Snijders,et al.  Friendship Networks Through Time: An Actor-Oriented Dynamic Statistical Network Model , 1999, Comput. Math. Organ. Theory.

[57]  Pedro Oliveira,et al.  The internationalization profiles of Portuguese SMEs , 2011 .

[58]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994 .

[59]  Marta Emília Rodrigues Monteiro A Panel Data Econometric Study of Corporate Tax Revenue in European Union: Structural, Cyclical Business and Institutional Determinants , 2012 .