THE EFFECT OF NETWORK STRUCTURE ON DYNAMIC TEAM FORMATION IN MULTI‐AGENT SYSTEMS

Previous studies of team formation in multi‐agent systems have typically assumed that the agent social network underlying the agent organization is either not explicitly described or the social network is assumed to take on some regular structure such as a fully connected network or a hierarchy. However, recent studies have shown that real‐world networks have a rich and purposeful structure, with common properties being observed in many different types of networks. As multi‐agent systems continue to grow in size and complexity, the network structure of such systems will become increasing important for designing efficient, effective agent communities.

[1]  Nicholas R. Jennings,et al.  The Cooperative Problem-solving Process , 1999, J. Log. Comput..

[2]  A. Wilhite,et al.  Bilateral Trade and ‘Small-World’ Networks , 2001 .

[3]  Marie desJardins,et al.  Agent-organized networks for dynamic team formation , 2005, AAMAS '05.

[4]  Beom Jun Kim,et al.  Dynamic instabilities induced by asymmetric influence: prisoners' dilemma game in small-world networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Hiroaki Kitano,et al.  RoboCup Rescue: search and rescue in large-scale disasters as a domain for autonomous agents research , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[6]  M. Weigt,et al.  On the properties of small-world network models , 1999, cond-mat/9903411.

[7]  Ronald C. Arkin,et al.  Line-of-sight constrained exploration for reactive multiagent robotic teams , 2002, 7th International Workshop on Advanced Motion Control. Proceedings (Cat. No.02TH8623).

[8]  Tuomas Sandholm,et al.  Algorithm for optimal winner determination in combinatorial auctions , 2002, Artif. Intell..

[9]  M. Kuperman,et al.  Social games in a social network. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  M. Georgeff,et al.  Social Plans: A Preliminary Report , 1992 .

[11]  Tuomas Sandholm,et al.  An algorithm for optimal winner determination in combinatorial auctions , 1999, IJCAI 1999.

[12]  Mark G. Terwilliger,et al.  Overview of Sensor Networks , 2004 .

[13]  Milind Tambe,et al.  Team Formation for Reformation , 2002 .

[14]  Kathleen M. Carley,et al.  Computational organization science: A new frontier , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Barbara J. Grosz,et al.  Collaborative Systems (AAAI-94 Presidential Address) , 1996 .

[16]  Milind Tambe,et al.  Role allocation and reallocation in multiagent teams: towards a practical analysis , 2003, AAMAS '03.

[17]  M. Kearns,et al.  An Experimental Study of the Coloring Problem on Human Subject Networks , 2006, Science.

[18]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[19]  Edmund H. Durfee,et al.  Designing tree-structured organizations for computational agents , 1996, Comput. Math. Organ. Theory.

[20]  S. Strogatz Exploring complex networks , 2001, Nature.

[21]  Hiroaki Kitano,et al.  RoboCup-Rescue: an international cooperative research project of robotics and AI for the disaster mitigation problem , 2000, Defense, Security, and Sensing.

[22]  Milind Tambe,et al.  Multiagent teamwork: analyzing the optimality and complexity of key theories and models , 2002, AAMAS '02.

[23]  Marie desJardins,et al.  Local strategy learning in networked multi-agent team formation , 2006, Autonomous Agents and Multi-Agent Systems.

[24]  Samir Aknine,et al.  A multi-agent method for forming and dynamic restructuring of pareto optimal coalitions , 2002, AAMAS '02.

[25]  B. Latané The psychology of social impact. , 1981 .

[26]  James A. Hendler,et al.  Agents and the Semantic Web , 2001, IEEE Intell. Syst..

[27]  Milind Tambe,et al.  Towards Flexible Teamwork , 1997, J. Artif. Intell. Res..

[28]  Tad Hogg,et al.  Communities of practice: Performance and evolution , 1994, Comput. Math. Organ. Theory.

[29]  Barbara Dunin-Keplicz,et al.  Agent Theory for Team Formation by Dialogue , 2000, ATAL.

[30]  Wei-Min Shen,et al.  Dynamic Distributed Resource Allocation: A Distributed Constraint Satisfaction Approach , 2001, ATAL.

[31]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[32]  Petter Holme,et al.  Prisoners' dilemma in real-world acquaintance networks: spikes and quasiequilibria induced by the interplay between structure and dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Milind Tambe,et al.  Robocup Rescue: A Proposal and Preliminary Experiences , 2000 .

[34]  Gesine Reinert,et al.  Small worlds , 2001, Random Struct. Algorithms.

[35]  Sarit Kraus,et al.  Coalition formation with uncertain heterogeneous information , 2003, AAMAS '03.

[36]  Victor R. Lesser,et al.  Coalitions Among Computationally Bounded Agents , 1997, Artif. Intell..

[37]  Michael P. Wellman,et al.  A market protocol for decentralized task allocation , 1998, Proceedings International Conference on Multi Agent Systems (Cat. No.98EX160).

[38]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[39]  Marie desJardins,et al.  Organizational learning and network adaptation in multi-agent systems , 2005 .

[40]  Deborah Estrin,et al.  Guest Editors' Introduction: Overview of Sensor Networks , 2004, Computer.

[41]  Victor R. Lesser,et al.  Organization-based cooperative coalition formation , 2004, Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004)..

[42]  Gerhard Weiss,et al.  Computational Organization Theory , 2000 .

[43]  Bernardo A. Huberman,et al.  Organizational Fluidity and Sustainable Cooperation , 1993, MAAMAW.

[44]  Luke Hunsberger,et al.  A combinatorial auction for collaborative planning , 2000, Proceedings Fourth International Conference on MultiAgent Systems.

[45]  Carson C. Chow,et al.  Small Worlds , 2000 .

[46]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[47]  Joshua M. Epstein,et al.  Growing Artificial Societies: Social Science from the Bottom Up , 1996 .

[48]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[49]  Jordi Delgado,et al.  Emergence of social conventions in complex networks , 2002, Artif. Intell..

[50]  Mani Srivastava,et al.  Overview of sensor networks , 2004 .

[51]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[52]  Yang Xu,et al.  Scaling teamwork to very large teams , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..

[53]  Wei-Min Shen,et al.  A Dynamic Distributed Constraint Satisfaction Approach to Resource Allocation , 2001, CP.

[54]  Robert L. Axtell,et al.  Effects of Interaction Topology and Activation Regime in Several Multi-Agent Systems , 2000, MABS.

[55]  Attila Szolnoki,et al.  Phase transitions for rock-scissors-paper game on different networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Victor R. Lesser,et al.  Using self-diagnosis to adapt organizational structures , 2001, AGENTS '01.

[57]  Edmund H. Durfee,et al.  Partial global planning: a coordination framework for distributed hypothesis formation , 1991, IEEE Trans. Syst. Man Cybern..

[58]  Marie desJardins,et al.  Agent-Organized Networks for Multi-Agent Production and Exchange , 2005, AAAI.