Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot.

Plasmonics offers the opportunity of tailoring the interaction of light with single quantum emitters. However, the strong field localization of plasmons requires spatial fabrication accuracy far beyond what is required for other nanophotonic technologies. Furthermore, this accuracy has to be achieved across different fabrication processes to combine quantum emitters and plasmonics. We demonstrate a solution to this critical problem by controlled positioning of plasmonic nanoantennas with an accuracy of 11 nm next to single self-assembled GaAs semiconductor quantum dots, whose position can be determined with nanometer precision. These dots do not suffer from blinking or bleaching or from random orientation of the transition dipole moment as colloidal nanocrystals do. Our method introduces flexible fabrication of arbitrary nanostructures coupled to single-photon sources in a controllable and scalable fashion.

[1]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[2]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[3]  Evelyn L. Hu,et al.  Strongly correlated photons on a chip , 2011, 1108.3053.

[4]  T. Klar,et al.  Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. , 2008, Physical review letters.

[5]  Alpan Bek,et al.  Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches. , 2008, Nano letters.

[6]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[7]  M. Lippitz,et al.  Positioning plasmonic nanostructures on single quantum emitters , 2012 .

[8]  Oliver Benson,et al.  Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. , 2009, Nano letters.

[9]  Oliver Benson,et al.  Assembly of hybrid photonic architectures from nanophotonic constituents , 2011, Nature.

[10]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[11]  Andrei Faraon,et al.  Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system. , 2011, Physical review letters.

[12]  Pierre M. Petroff,et al.  Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes , 2005, Science.

[13]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[14]  O. Schmidt,et al.  Strain-induced tuning of the emission wavelength of high quality GaAs/AlGaAs quantum dots in the spectral range of the 87Rb D2 lines , 2011 .

[15]  M. Orrit Nano-optics: Quantum light switch , 2007 .

[16]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[17]  Lukas Novotny,et al.  Spectral dependence of single molecule fluorescence enhancement. , 2007, Optics express.

[18]  A Lemaître,et al.  Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. , 2008, Physical review letters.

[19]  L. Novotný,et al.  Antennas for light , 2011 .

[20]  O. Schmidt,et al.  Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot , 2011 .

[21]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[22]  O. Schmidt,et al.  Independent wavelength and density control of uniform GaAs/AlGaAs quantum dots grown by infilling self-assembled nanoholes , 2012 .

[23]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[24]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[25]  Pierre Petroff,et al.  Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity , 2009 .

[26]  Peter Lodahl,et al.  Strongly modified plasmon-matter interaction with mesoscopic quantum emitters , 2010, 1011.5669.

[27]  Christian Schneider,et al.  Lithographic alignment to site-controlled quantum dots for device integration , 2008 .

[28]  Harald Giessen,et al.  Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna. , 2010, Nano letters.