Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot.
暂无分享,去创建一个
Harald Giessen | Oliver G Schmidt | Paola Atkinson | Hongyi Zhang | O. Schmidt | M. Lippitz | H. Giessen | A. Rastelli | P. Atkinson | K. Lindfors | F. Phillipp | Markus Lippitz | Armando Rastelli | Markus Pfeiffer | Klas Lindfors | Bernhard Fenk | Fritz Phillipp | M. Pfeiffer | B. Fenk | Hongyi Zhang
[1] Glenn P. Goodrich,et al. Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.
[2] Giorgio Volpe,et al. Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.
[3] Evelyn L. Hu,et al. Strongly correlated photons on a chip , 2011, 1108.3053.
[4] T. Klar,et al. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. , 2008, Physical review letters.
[5] Alpan Bek,et al. Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches. , 2008, Nano letters.
[6] V. Kulakovskii,et al. Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.
[7] M. Lippitz,et al. Positioning plasmonic nanostructures on single quantum emitters , 2012 .
[8] Oliver Benson,et al. Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. , 2009, Nano letters.
[9] Oliver Benson,et al. Assembly of hybrid photonic architectures from nanophotonic constituents , 2011, Nature.
[10] Vahid Sandoghdar,et al. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.
[11] Andrei Faraon,et al. Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system. , 2011, Physical review letters.
[12] Pierre M. Petroff,et al. Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes , 2005, Science.
[13] D. Pohl,et al. Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.
[14] O. Schmidt,et al. Strain-induced tuning of the emission wavelength of high quality GaAs/AlGaAs quantum dots in the spectral range of the 87Rb D2 lines , 2011 .
[15] M. Orrit. Nano-optics: Quantum light switch , 2007 .
[16] L. Novotný,et al. Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.
[17] Lukas Novotny,et al. Spectral dependence of single molecule fluorescence enhancement. , 2007, Optics express.
[18] A Lemaître,et al. Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. , 2008, Physical review letters.
[19] L. Novotný,et al. Antennas for light , 2011 .
[20] O. Schmidt,et al. Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot , 2011 .
[21] W. Cai,et al. Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.
[22] O. Schmidt,et al. Independent wavelength and density control of uniform GaAs/AlGaAs quantum dots grown by infilling self-assembled nanoholes , 2012 .
[23] D. E. Chang,et al. A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.
[24] Zongfu Yu,et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .
[25] Pierre Petroff,et al. Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity , 2009 .
[26] Peter Lodahl,et al. Strongly modified plasmon-matter interaction with mesoscopic quantum emitters , 2010, 1011.5669.
[27] Christian Schneider,et al. Lithographic alignment to site-controlled quantum dots for device integration , 2008 .
[28] Harald Giessen,et al. Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna. , 2010, Nano letters.