Diamond-on-Polymer Microelectrode Arrays Fabricated Using a Chemical Release Transfer Process

This paper reports the design, fabrication, and characterization of diamond-on-polymer microelectrode arrays. A “diamond-first” chemical release transfer process was implemented to integrate diamond electrodes, grown at temperatures >; 700 °C, on a temperature-sensitive polynorbornene-based (PNB) substrate, allowing for the advantageous neural interfacing properties of diamond to be utilized in a flexible device. Intracortical probes with two electrodes and peripheral nerve electrode arrays with ten electrodes ranging in area from 800 to 41 000 μm2 were fabricated. Mechanical testing showed that the structures were flexible, with the composite structure having mechanical characteristics similar to bare PNB. Electrical testing confirmed that ohmic contacts were formed without a postanneal step and determined a diamond-on-polymer electrode impedance of ~ 1.5 MΩ at 1 kHz.

[1]  Siamak Najarian,et al.  A Biomechanical Composite Model to Determine Effective Elastic Moduli of the CNS Gray Matter , 2007 .

[2]  E. Obermeier,et al.  Dry etching of undoped and boron doped polycrystalline diamond films , 1995 .

[3]  T. Stieglitz Flexible biomedical microdevices with double-sided electrode arrangements for neural applications , 2001 .

[4]  P. Bergonzo,et al.  High aspect ratio diamond microelectrode array for neuronal activity measurements , 2008 .

[5]  K. Wise,et al.  A three-dimensional microelectrode array for chronic neural recording , 1994, IEEE Transactions on Biomedical Engineering.

[6]  Boris Hofmann,et al.  Diamond Transistor Array for Extracellular Recording From Electrogenic Cells , 2009 .

[7]  R A Normann,et al.  The Utah intracortical Electrode Array: a recording structure for potential brain-computer interfaces. , 1997, Electroencephalography and clinical neurophysiology.

[8]  Akira Fujishima,et al.  Electroanalysis of dopamine and NADH at conductive diamond electrodes , 1999 .

[9]  K. Mabuchi,et al.  Parylene flexible neural probes integrated with microfluidic channels. , 2005, Lab on a chip.

[10]  L. Tang,et al.  Biocompatibility of chemical-vapour-deposited diamond. , 1995, Biomaterials.

[11]  James Weiland,et al.  In vitro and in vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips. , 2006, Journal of biomedical materials research. Part B, Applied biomaterials.

[12]  Andrew B Schwartz,et al.  Cortical neural prosthetics. , 2004, Annual review of neuroscience.

[13]  M. Armstrong‐James,et al.  The electrical characteristics of carbon fibre microelectrodes , 1980, Journal of Neuroscience Methods.

[14]  H. K. Charles,et al.  Multisite microprobes for neural recordings , 1991, IEEE Transactions on Biomedical Engineering.

[15]  Jiping He,et al.  Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel. , 2004, Biosensors & bioelectronics.

[16]  Qing Bai,et al.  A high-yield microassembly structure for three-dimensional microelectrode arrays , 2000, IEEE Transactions on Biomedical Engineering.

[17]  M. Vaněček,et al.  Seeding of polymer substrates for nanocrystalline diamond film growth , 2009 .

[18]  S. Kitazawa,et al.  Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. , 2007, Analytical chemistry.

[19]  Xiangwei Zhu,et al.  CVD diamond thin film technology for MEMS packaging , 2006 .

[20]  C. A. Zorman,et al.  A bio-inspired, chemo-responsive polymer nanocomposite for mechanically dynamic microsystems , 2009, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[21]  J. Ohta,et al.  The development of a multichannel electrode array for retinal prostheses , 2006, Journal of Artificial Organs.

[22]  Christopher Nimsky,et al.  Estimating Mechanical Brain Tissue Properties with Simulation and Registration , 2004, MICCAI.

[23]  E. Fetz,et al.  Direct control of paralyzed muscles by cortical neurons , 2008, Nature.

[24]  Ho-Yin Chan,et al.  A Novel Diamond Microprobe for Neuro-Chemical and -Electrical Recording in Neural Prosthesis , 2009, Journal of Microelectromechanical Systems.

[25]  G. Cardinale,et al.  Fracture strength measurement of filament assisted CVD polycrystalline diamond films , 1992 .

[26]  C. Zorman,et al.  Development of a Microfabricated Flat Interface Nerve Electrode Based on Liquid Crystal Polymer and Polynorbornene Multilayered Structures , 2007, 2007 3rd International IEEE/EMBS Conference on Neural Engineering.

[27]  L. Cingolani,et al.  The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks. , 2010, Biomaterials.

[28]  P. Renaud,et al.  Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. , 2004, Biosensors & bioelectronics.

[29]  J. Galligan,et al.  Diamond microelectrodes for use in biological environments , 2005 .

[30]  David J. Anderson,et al.  Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes , 2001 .

[31]  Justin C. Williams,et al.  Flexible polyimide-based intracortical electrode arrays with bioactive capability , 2001, IEEE Transactions on Biomedical Engineering.

[32]  M. Vaněček,et al.  Simplified procedure for patterned growth of nanocrystalline diamond micro-structures , 2009 .

[33]  Igor A. Lavrov,et al.  Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording , 2008 .

[34]  A. Argoitia,et al.  Hydrogen and Oxygen Evolution on Boron‐Doped Diamond Electrodes , 1996 .

[35]  Polycrystalline Diamond-on-Polymer Electrode Arrays Fabricated Using a Polymer-Based Transfer Process , 2010 .

[36]  R. Normann,et al.  Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex , 1998, Journal of Neuroscience Methods.

[37]  M. Nesladek,et al.  Transparent diamond‐on‐glass micro‐electrode arrays for ex‐vivo neuronal study , 2008 .

[38]  Craig T. Nordhausen,et al.  Single unit recording capabilities of a 100 microelectrode array , 1996, Brain Research.

[39]  R Fahlbusch,et al.  Determination of the elasticity parameters of brain tissue with combined simulation and registration , 2005, The international journal of medical robotics + computer assisted surgery : MRCAS.

[40]  Rajeshuni Ramesham,et al.  Fabrication of diamond microstructures for microelectromechanical systems (MEMS) by a surface micromachining process , 1999 .

[41]  H. B. Martin,et al.  Voltammetry Studies of Single‐Crystal and Polycrystalline Diamond Electrodes , 1999 .

[42]  H. Chiel,et al.  Diamond electrodes for neurodynamic studies in Aplysia californica , 2006 .

[43]  E. Kohn,et al.  Diamond MEMS — a new emerging technology , 1999 .

[44]  A. Pasquarelli,et al.  Transparent diamond microelectrodes for biochemical application , 2010 .

[45]  Justin C. Williams,et al.  Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex , 2004, IEEE Transactions on Biomedical Engineering.

[47]  K. Wise,et al.  A high-yield IC-compatible multichannel recording array , 1985, IEEE Transactions on Electron Devices.

[48]  H. Shiomi Reactive ion etching of diamond in O2 and CF4 plasma, and fabrication of porous diamond for field emitter cathodes , 1997 .

[49]  C. X. Liu,et al.  Au/p-diamond ohmic contacts deposited by RF sputtering , 2008 .

[50]  K D Wise,et al.  An evaluation of photoengraved microelectrodes for extracellular single-unit recording. , 1973, IEEE transactions on bio-medical engineering.

[51]  Qing Bai,et al.  Single-unit neural recording with active microelectrode arrays , 2001, IEEE Transactions on Biomedical Engineering.

[52]  H. Chiel,et al.  Chronic in vivo nerve electrical recordings of Aplysia californica using a boron-doped polycrystalline diamond electrode , 2010 .

[53]  U. Hofmann,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a 32-site Neural Recording Probe Fabricated by Drie of Soi Substrates , 2022 .

[54]  J. Hetke,et al.  Strength characterization of silicon microprobes in neurophysiological tissues , 1990, IEEE Transactions on Biomedical Engineering.

[55]  Jon A. Mukand,et al.  Neuronal ensemble control of prosthetic devices by a human with tetraplegia , 2006, Nature.

[56]  P. Tresco,et al.  Response of brain tissue to chronically implanted neural electrodes , 2005, Journal of Neuroscience Methods.

[57]  Jiping He,et al.  Polyimide-based intracortical neural implant with improved structural stiffness , 2004 .

[58]  R. Stein,et al.  Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. , 2001, Journal of neurophysiology.

[59]  J. Galligan,et al.  Diamond microelectrodes for in vitro electroanalytical measurements: current status and remaining challenges. , 2008, The Analyst.

[60]  Minseo Park,et al.  Fabrication of diamond micro-structures by ink-jet printed diamond seeding and microwave plasma assisted chemical vapor deposition , 2008 .

[61]  D. Twitchen,et al.  X-ray photoelectron spectroscopy studies on the formation of chromium contacts to single-crystal CVD diamond , 2008 .