Periodic Solutions and KAM Tori in a Triaxial Potential

The existence and stability of periodic solutions for an autonomous Hamiltonian system in 1:1:1 resonance depending on two real parameters $\alpha$ and $\beta$ is established using reduction and averaging theories. The different types of periodic solutions as well as their bifurcation curves are characterized in terms of the parameters. The linear stability of each periodic solution, together with the determination of KAM 3-tori encasing some of the linearly stable periodic solutions, is proved.

[1]  New 1:1:1 periodic solutions in $$3$$3-dimensional galactic-type Hamiltonian systems , 2014 .

[2]  Kenneth R. Meyer,et al.  Symmetries and Integrals in Mechanics , 1973 .

[3]  K. Efstathiou,et al.  Perturbations of the 1:1:1 resonance with tetrahedral symmetry: a three degree of freedom analogue of the two degree of freedom Henon-Heiles Hamiltonian , 2004 .

[4]  Jesús F. Palacián,et al.  Hamiltonian Oscillators in 1—1—1 Resonance: Normalization and Integrability , 2000, J. Nonlinear Sci..

[5]  Kenneth R. Meyer,et al.  Periodic Solutions in Hamiltonian Systems, Averaging, and the Lunar Problem , 2008, SIAM J. Appl. Dyn. Syst..

[6]  D. Merritt,et al.  Stellar orbits in a triaxial galaxy. I - Orbits in the plane of rotation , 1983 .

[7]  André Deprit,et al.  Canonical transformations depending on a small parameter , 1969 .

[8]  C. Valls,et al.  PERIODIC SOLUTIONS OF A GALACTIC POTENTIAL , 2014 .

[9]  J. Moser,et al.  Regularization of kepler's problem and the averaging method on a manifold , 1970 .

[10]  J. Llibre,et al.  Periodic orbits for the generalized Yang–Mills Hamiltonian system in dimension 6 , 2014 .

[11]  J. Llibre,et al.  New families of periodic orbits for a galactic potential , 2016 .

[12]  J. Marsden,et al.  Reduction of symplectic manifolds with symmetry , 1974 .

[13]  M. Kummer,et al.  On averaging, reduction, and symmetry in hamiltonian systems , 1983 .

[14]  Y. Yi,et al.  Invariant Tori in Hamiltonian Systems with High Order Proper Degeneracy , 2010 .

[15]  H. Hanßmann,et al.  Algebraic Methods for Determining Hamiltonian Hopf Bifurcations in Three-Degree-of-Freedom Systems , 2005 .

[16]  Jesús F. Palacián,et al.  On perturbed oscillators in 1-1-1 resonance: the case of axially symmetric cubic potentials , 2002 .

[17]  R. Cushman,et al.  Linear Hamiltonian Hopf bifurcation for point–group–invariant perturbations of the 1:1:1 resonance , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  Kenneth R. Meyer,et al.  Geometric Averaging of Hamiltonian Systems: Periodic Solutions, Stability, and KAM Tori , 2011, SIAM Journal on Applied Dynamical Systems.

[19]  George Huitema,et al.  Quasi-periodic motions in families of dynamical systems , 1996 .

[20]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .