Periodic Solutions and KAM Tori in a Triaxial Potential
暂无分享,去创建一个
Jesús F. Palacián | Patricia Yanguas | Claudio Vidal | Jhon Vidarte | J. Palacián | C. Vidal | P. Yanguas | J. Vidarte
[1] New 1:1:1 periodic solutions in $$3$$3-dimensional galactic-type Hamiltonian systems , 2014 .
[2] Kenneth R. Meyer,et al. Symmetries and Integrals in Mechanics , 1973 .
[3] K. Efstathiou,et al. Perturbations of the 1:1:1 resonance with tetrahedral symmetry: a three degree of freedom analogue of the two degree of freedom Henon-Heiles Hamiltonian , 2004 .
[4] Jesús F. Palacián,et al. Hamiltonian Oscillators in 1—1—1 Resonance: Normalization and Integrability , 2000, J. Nonlinear Sci..
[5] Kenneth R. Meyer,et al. Periodic Solutions in Hamiltonian Systems, Averaging, and the Lunar Problem , 2008, SIAM J. Appl. Dyn. Syst..
[6] D. Merritt,et al. Stellar orbits in a triaxial galaxy. I - Orbits in the plane of rotation , 1983 .
[7] André Deprit,et al. Canonical transformations depending on a small parameter , 1969 .
[8] C. Valls,et al. PERIODIC SOLUTIONS OF A GALACTIC POTENTIAL , 2014 .
[9] J. Moser,et al. Regularization of kepler's problem and the averaging method on a manifold , 1970 .
[10] J. Llibre,et al. Periodic orbits for the generalized Yang–Mills Hamiltonian system in dimension 6 , 2014 .
[11] J. Llibre,et al. New families of periodic orbits for a galactic potential , 2016 .
[12] J. Marsden,et al. Reduction of symplectic manifolds with symmetry , 1974 .
[13] M. Kummer,et al. On averaging, reduction, and symmetry in hamiltonian systems , 1983 .
[14] Y. Yi,et al. Invariant Tori in Hamiltonian Systems with High Order Proper Degeneracy , 2010 .
[15] H. Hanßmann,et al. Algebraic Methods for Determining Hamiltonian Hopf Bifurcations in Three-Degree-of-Freedom Systems , 2005 .
[16] Jesús F. Palacián,et al. On perturbed oscillators in 1-1-1 resonance: the case of axially symmetric cubic potentials , 2002 .
[17] R. Cushman,et al. Linear Hamiltonian Hopf bifurcation for point–group–invariant perturbations of the 1:1:1 resonance , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[18] Kenneth R. Meyer,et al. Geometric Averaging of Hamiltonian Systems: Periodic Solutions, Stability, and KAM Tori , 2011, SIAM Journal on Applied Dynamical Systems.
[19] George Huitema,et al. Quasi-periodic motions in families of dynamical systems , 1996 .
[20] Jorge V. José,et al. Chaos in classical and quantum mechanics , 1990 .