A maximum stress at a distance criterion for the prediction of crack propagation in adhesively-bonded joints

The present work relates to the numerical prediction of the mode I failure of metal-to-metal adhesive joints under 2D quasi-static, steady-state conditions by means of a criterion based on attaining a critical value of maximum principal stress, deltac , at a critical distance, rc , ahead of the crack tip. The model, which fully accounts for the complex elastic-plastic fields inside the adhesive, predicts very accurately the failure of the structural adhesive (i) over a wide range of the thickness of the adhesive layer from 0.1 to 1 mm, and (ii) for two very different test geometries: namely the linear elastic fracture-mechanics (LEFM) tapered double-cantilever beam (TDCB) test and the elastic-plastic fracture-mechanics (EPFM) wedge-peel test. This approach is applied to an epoxy-based structural adhesive where failure occurs cohesively in the adhesive layer. Additional non-dimensional parametric studies have been performed to unravel the link between the geometric effects, the various contributions to the fracture energy, the local stress and strain fields, and the material parameters. It is shown that the proposed criterion based on attaining a critical value of the maximum principal stress at a critical distance ahead of the crack tip provides a better predictive model than that based upon using a cohesive zone model approach.

[1]  A. D. Crocombe,et al.  A Unified Approach for Predicting the Strength of Cracked and Non-Cracked Adhesive Joints , 1995 .

[2]  Alojz Ivankovic,et al.  Effects of bond gap thickness on the fracture of nano-toughened epoxy adhesive joints , 2012 .

[3]  J. D. Clark,et al.  Ultimate Tensile Stress over a Zone: A New Failure Criterion for Adhesive Joints , 1993 .

[4]  Ioannis Georgiou The fracture of adhesively-bonded aluminium joints for automotive structures , 2003 .

[5]  C. Shih,et al.  Ductile crack growth-I. A numerical study using computational cells with microstructurally-based length scales , 1995 .

[6]  Thomas Pardoen,et al.  Predictive model for void nucleation and void growth controlled ductility in quasi-eutectic cast aluminium alloys , 2005 .

[7]  Thomas Pardoen,et al.  Numerical analysis of the energy contributions in peel tests: A steady-state multilevel finite element approach , 2008 .

[8]  Thomas Pardoen,et al.  Mode I fracture of sheet metal , 2004 .

[9]  Viggo Tvergaard,et al.  On the toughness of ductile adhesive joints , 1996 .

[10]  J. G. Williams,et al.  Crack blunting mechanisms in polymers , 1980 .

[11]  John W. Hutchinson,et al.  Quasi-Static Steady Crack Growth in Small-Scale Yielding , 1980 .

[12]  J. G. Williams,et al.  A numerical analysis of the elastic-plastic peel test , 2006 .

[13]  Chad M. Landis,et al.  Constraint effects in adhesive joint fracture , 2005 .

[14]  J. G. Williams,et al.  The calculation of adhesive fracture energies in mode I: revisiting the tapered double cantilever beam (TDCB) test , 2003 .

[15]  Robert D. Adams,et al.  The strength of adhesively bonded T-joints , 2002 .

[16]  J. Whitney,et al.  Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations , 1974 .

[17]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[18]  Herzl Chai,et al.  Bond Thickness Effect in Adhesive Joints and Its Significance for Mode I Interlaminar Fracture of Composites , 1986 .

[19]  M. D. Thouless,et al.  Deformation and fracture of adhesive layers constrained by plastically-deforming adherends , 2000 .

[20]  J. G. Williams,et al.  Cohesive zone models and the plastically deforming peel test , 2003, The Journal of Adhesion.

[21]  David Taylor,et al.  The Theory of Critical Distances , 2007 .

[22]  T. Pardoen,et al.  A multiscale parametric study of mode I fracture in metal-to-metal low-toughness adhesive joints , 2012, International Journal of Fracture.

[23]  Viggo Tvergaard,et al.  Effect of strain-dependent cohesive zone model on predictions of crack growth resistance , 1996 .

[24]  John R. Rice,et al.  ON THE RELATIONSHIP BETWEEN CRITICAL TENSILE STRESS AND FRACTURE TOUGHNESS IN MILD STEEL , 1973 .

[25]  Chad M. Landis,et al.  Crack velocity dependent toughness in rate dependent materials , 2000 .

[26]  S. Shaw,et al.  The Fracture Resistance of a Toughened Epoxy Adhesive , 1981 .

[27]  J. G. Williams,et al.  The influence of bond line thickness and peel arm thickness on adhesive fracture toughness of rubber toughened epoxy-aluminium alloy laminates , 2008 .

[28]  Thomas Pardoen,et al.  Failure Mechanisms of Metals , 2007 .

[29]  K. Salomonsson,et al.  Modeling and parameter calibration of an adhesive layer at the meso level , 2008 .

[30]  Thomas Pardoen,et al.  Micromechanics-based model for trends in toughness of ductile metals , 2003 .

[31]  A. Kinloch Adhesives in engineering , 1997 .

[32]  M. D. Thouless,et al.  Analysis of the Symmetrical 90°-peel Test with Extensive Plastic Deformation , 2000 .

[33]  F. Delannay,et al.  Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars , 1998 .

[34]  Thomas Pardoen,et al.  A micromechanics based damage model for composite materials , 2010 .

[35]  T. Siegmund,et al.  Prediction of the Work of Separation and Implications to Modeling , 1999 .

[36]  Viggo Tvergaard,et al.  Toughness of an interface along a thin ductile layer joining elastic solids , 1994 .