Exploring the Anticancer Potential of Diiron Bis-cyclopentadienyl Complexes with Bridging Hydrocarbyl Ligands: Behavior in Aqueous Media and In Vitro Cytotoxicity

A series of diiron complexes based on the [Fe2Cp2(CO)x] skeleton (Cp = η5-C5H5, x = 2, 3; η4-C5H5Ph in place of one Cp in one case) and containing different bridging hydrocarbyl ligands (aminocarby...

[1]  F. Chiellini,et al.  Anticancer Potential of Diiron Vinyliminium Complexes. , 2019, Chemistry.

[2]  F. Marchetti,et al.  Bond Forming Reactions Involving Isocyanides at Diiron Complexes , 2019, Inorganics.

[3]  Benjamin S. Natinsky,et al.  Two are better than one , 2019, Nature Chemistry.

[4]  F. Marchetti,et al.  Controlled Dissociation of Iron and Cyclopentadienyl from a Diiron Complex with a Bridging C3 Ligand Triggered by One-Electron Reduction. , 2018, Inorganic chemistry.

[5]  F. Marchetti,et al.  DFT Mechanistic Insights into the Alkyne Insertion Reaction Affording Diiron μ-Vinyliminium Complexes and New Functionalization Pathways , 2018, Organometallics.

[6]  Yuliang Yang,et al.  Potent Half-Sandwich Iridium(III) and Ruthenium(II) Anticancer Complexes Containing a P^O-Chelated Ligand , 2018, Organometallics.

[7]  F. Marchetti Constructing Organometallic Architectures from Aminoalkylidyne Diiron Complexes , 2018, European Journal of Inorganic Chemistry.

[8]  M. Szostak,et al.  Iron-Catalyzed Cross-Couplings in the Synthesis of Pharmaceuticals: In Pursuit of Sustainability. , 2018, Angewandte Chemie.

[9]  L. Messori,et al.  Synthesis, characterization and DNA interactions of [Pt3(TPymT)Cl3], the trinuclear platinum(II) complex of the TPymT ligand. , 2018, Journal of inorganic biochemistry.

[10]  P. Dyson,et al.  α-Diimines as Versatile, Derivatizable Ligands in Ruthenium(II) p-Cymene Anticancer Complexes. , 2018, Inorganic chemistry.

[11]  B. Wang,et al.  Strategies toward Organic Carbon Monoxide Prodrugs. , 2018, Accounts of chemical research.

[12]  F. Marchetti,et al.  Regioselective Nucleophilic Additions to Diiron Carbonyl Complexes Containing a Bridging Aminocarbyne Ligand: A Synthetic, Crystallographic and DFT Study , 2018 .

[13]  C. Orvain,et al.  Rollover Cyclometalated Bipyridine Platinum Complexes as Potent Anticancer Agents: Impact of the Ancillary Ligands on the Mode of Action. , 2018, Inorganic chemistry.

[14]  C. Biot,et al.  Ferroquine, the next generation antimalarial drug, has antitumor activity , 2017, Scientific Reports.

[15]  L. De Gioia,et al.  Mechanistic Insight into Electrocatalytic H2 Production by [Fe2(CN){μ-CN(Me)2}(μ-CO)(CO)(Cp)2]: Effects of Dithiolate Replacement in [FeFe] Hydrogenase Models. , 2017, Inorganic chemistry.

[16]  P. Mascharak,et al.  Attenuation of Antioxidant Capacity in Human Breast Cancer Cells by Carbon Monoxide through Inhibition of Cystathionine β-Synthase Activity: Implications in Chemotherapeutic Drug Sensitivity. , 2017, Journal of medicinal chemistry.

[17]  G. Gasser,et al.  The medicinal chemistry of ferrocene and its derivatives , 2017 .

[18]  A. Saeed,et al.  Recent advances in the synthesis, biological activities and various applications of ferrocene derivatives , 2017 .

[19]  R. Scopelliti,et al.  First Dicationic Ruthenium(II)-arene Curcumin Complexes containing methylated PTA: Synthesis, Structure and Cytotoxicity , 2017 .

[20]  S. Marchianò,et al.  In vitro anticancer activity evaluation of new cationic platinum(II) complexes based on imidazole moiety. , 2017, Bioorganic & medicinal chemistry.

[21]  M. Gelbcke,et al.  A survey of the mechanisms of action of anticancer transition metal complexes. , 2016, Future medicinal chemistry.

[22]  A. Fürstner Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion , 2016, ACS central science.

[23]  F. Marchetti,et al.  Growing the Molecular Architecture at Alkynyl(amino)carbene Ligands in Diiron µ‐Aminocarbyne Complexes , 2016 .

[24]  J. McCarthy,et al.  A Phase II pilot trial to evaluate safety and efficacy of ferroquine against early Plasmodium falciparum in an induced blood-stage malaria infection study , 2016, Malaria Journal.

[25]  F. Marchetti,et al.  Photochemical Alkyne Insertions into the Iron–Thiocarbonyl Bond of [Fe2(CS)(CO)3(Cp)2] , 2016 .

[26]  T. Rauchfuss,et al.  Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. , 2016, Chemical reviews.

[27]  T. Rauchfuss,et al.  Synthesis of Diiron(I) Dithiolato Carbonyl Complexes. , 2016, Chemical reviews.

[28]  A. Kirillov,et al.  Silver(I) 1,3,5-Triaza-7-phosphaadamantane Coordination Polymers Driven by Substituted Glutarate and Malonate Building Blocks: Self-Assembly Synthesis, Structural Features, and Antimicrobial Properties. , 2016, Inorganic chemistry.

[29]  F. Gloaguen Electrochemistry of Simple Organometallic Models of Iron-Iron Hydrogenases in Organic Solvent and Water. , 2016, Inorganic chemistry.

[30]  S. Ferrari,et al.  Induction of Cytotoxicity through Photorelease of Aminoferrocene. , 2015, Inorganic chemistry.

[31]  D. Tonelli,et al.  Diiron Complexes Bearing Bridging Hydrocarbyl Ligands as Electrocatalysts for Proton Reduction , 2015 .

[32]  H. Knölker,et al.  Iron catalysis in organic synthesis. , 2015, Chemical reviews.

[33]  L. Gade,et al.  Iron achieves noble metal reactivity and selectivity: highly reactive and enantioselective iron complexes as catalysts in the hydrosilylation of ketones. , 2015, Journal of the American Chemical Society.

[34]  F. Marchetti,et al.  Coupling of Isocyanide and μ-Aminocarbyne Ligands in Diiron Complexes Promoted by Hydride Addition , 2014 .

[35]  R. Scopelliti,et al.  Conformational control of anticancer activity: the application of arene-linked dinuclear ruthenium(II) organometallics , 2014 .

[36]  G. J. Chuang,et al.  Cooperative effect of two metals: CoPd(OAc)4-catalyzed C-H amination and aziridination. , 2014, Chemistry.

[37]  S. Gambarelli,et al.  Multimetallic cooperativity in uranium-mediated CO₂ activation. , 2014, Journal of the American Chemical Society.

[38]  U. Rothlisberger,et al.  Ligand substitutions between ruthenium–cymene compounds can control protein versus DNA targeting and anticancer activity , 2014, Nature Communications.

[39]  G. Cerchiaro,et al.  Analytical methods for copper, zinc and iron quantification in mammalian cells. , 2013, Metallomics : integrated biometal science.

[40]  L. Sellner,et al.  Aminoferrocene-based prodrugs and their effects on human normal and cancer cells as well as bacterial cells. , 2013, Journal of medicinal chemistry.

[41]  F. Marchetti,et al.  Synthesis of diiron μ-allenyl complexes by electrophilic addition to propen-2-yl-dimetallacyclopentenone species: A joint experimental and DFT study , 2013 .

[42]  V. Zanotti,et al.  C-C bond formation in diiron complexes. , 2012, Chemistry.

[43]  P. Sadler,et al.  The contrasting chemical reactivity of potent isoelectronic iminopyridine and azopyridine osmium(II) arene anticancer complexes , 2012 .

[44]  B. Mann CO-Releasing Molecules: A Personal View , 2012 .

[45]  L. Juillerat-Jeanneret,et al.  Cellular delivery of pyrenyl-arene ruthenium complexes by a water-soluble arene ruthenium metalla-cage. , 2012, Dalton transactions.

[46]  F. Marchetti,et al.  Electrochemical, EPR and Computational Results on [Fe2Cp2(CO)2]-Based Complexes with a Bridging Hydrocarbyl Ligand , 2011 .

[47]  F. Marchetti,et al.  Reversible Reductive Dimerization of Diiron µ-Vinyl Complex via C–C Coupling: Characterization and Reactivity of the Intermediate Radical Species , 2011 .

[48]  Michael L. Singleton,et al.  Sulfonated diiron complexes as water-soluble models of the [Fe-Fe]-hydrogenase enzyme active site. , 2011, Inorganic chemistry.

[49]  F. Marchetti,et al.  Cationic diiron and diruthenium μ-allenyl complexes: synthesis, X-ray structures and cyclization reactions with ethyldiazoacetate/amine affording unprecedented butenolide- and furaniminium-substituted bridging carbene ligands. , 2010, Dalton transactions.

[50]  E. Fujita,et al.  Iron(II) and ruthenium(II) complexes containing P, N, and H ligands: structure, spectroscopy, electrochemistry, and reactivity. , 2010, Inorganic chemistry.

[51]  T. Bowden,et al.  Survey and qualification of internal standards for quantification by 1H NMR spectroscopy. , 2010, Journal of pharmaceutical and biomedical analysis.

[52]  L. Otterbein,et al.  The therapeutic potential of carbon monoxide , 2010, Nature Reviews Drug Discovery.

[53]  P. Chirik Modern Alchemy: Replacing Precious Metals with Iron in Catalytic Alkene and Carbonyl Hydrogenation Reactions , 2010 .

[54]  A. Kochel,et al.  Synthesis of the first monodentate S- and O-coordinating 1,3,5-triaza-7-phosphaadamantane-7-chalcogenides [CoCl(bpy)2(Z-PTAZ)]X (ZS, O; bpy = 2,2′-bipyridine; X = BF4, PF6) and [CoCl(bpy)2(N-PTA)]BF4 (PTA = 1,3,5-triaza-7-phosphaadamantane) , 2010 .

[55]  John E. Bercaw,et al.  NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist , 2010 .

[56]  D. Lichtenberger,et al.  Preparation and Characterization of Homologous Diiron Dithiolato, Diselenato, and Ditellurato Complexes: [FeFe]-Hydrogenase Models , 2009 .

[57]  F. Gloaguen,et al.  Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the [FeFe]-hydrogenases , 2009 .

[58]  A. Pombeiro,et al.  Syntheses and Crystal Structures of the First Zinc Complex with 1,3,5‐Triaza‐7‐phosphaadamantane (PTA), [ZnCl2(PTA)2], and of the Hybrid Organic–Inorganic Salts of N‐Methyl‐1,3,5‐triaza‐7‐phosphaadamantane with Tetrahalozinc [PTA–Me]2­[ZnI2X2] (X = I, Cl) , 2009 .

[59]  F. Marchetti,et al.  Coupling of Allenes with μ‐Alkylidyne Ligands in Diiron Complexes: Synthesis of Novel Bridging Thio‐ and Aminobutadienylidene Complexes , 2008 .

[60]  R. Foresti,et al.  Use of carbon monoxide as a therapeutic agent: promises and challenges , 2008, Intensive Care Medicine.

[61]  Xiaoming Liu,et al.  Modeling [Fe-Fe] hydrogenase: evidence for bridging carbonyl and distal iron coordination vacancy in an electrocatalytically competent proton reduction by an iron thiolate assembly that operates through Fe(0)-Fe(II) levels. , 2007, Journal of the American Chemical Society.

[62]  Licheng Sun,et al.  Diiron azadithiolates with hydrophilic phosphatriazaadamantane ligand as iron-only hydrogenase active site models : Synthesis, structure, and electrochemical study , 2007 .

[63]  F. Marchetti,et al.  Synthesis and Characterization of New Diiron and Diruthenium μ-Aminocarbyne Complexes Containing Terminal S-, P- and C-Ligands , 2007 .

[64]  V. Ritleng,et al.  Hydrocarbyl ligand transformations on heterobimetallic complexes. , 2007, Chemical reviews.

[65]  L. Falvello,et al.  A silver(I) coordination polymer containing tridentate N- and P-coordinating 1,3,5-triaza-7-phosphaadamantane (PTA) ligands , 2006 .

[66]  F. Marchetti,et al.  Deprotonation of μ-Vinyliminium Ligands in Diiron Complexes: A Route for the Synthesis of Mono- and Polynuclear Species Containing Novel Multidentate Ligands , 2005 .

[67]  F. Marchetti,et al.  Synthesis and reactivity with amines of new diiron alkynyl methoxy carbene complexes , 2005 .

[68]  F. Marchetti,et al.  Diiron and diruthenium aminocarbyne complexes containing pseudohalides: stereochemistry and reactivity , 2005 .

[69]  F. Marchetti,et al.  Diiron-aminocarbyne complexes with amine or imine ligands: C–N coupling between imine and aminocarbyne ligands promoted by tolylacetylide addition to [Fe2{μ-CN(Me)R}(μ-CO)(CO)(NHCPh2)(Cp)2][SO3CF3] , 2005 .

[70]  M. Soriaga,et al.  The hydrophilic phosphatriazaadamantane ligand in the development of H2 production electrocatalysts: iron hydrogenase model complexes. , 2004, Journal of the American Chemical Society.

[71]  A. Bianchi,et al.  Intercalation of Zn(II) and Cu(II) complexes of the cyclic polyamine Neotrien into DNA: equilibria and kinetics. , 2004, Journal of inorganic biochemistry.

[72]  A. Fersht,et al.  Rescuing the function of mutant p53 , 2001, Nature Reviews Cancer.

[73]  R. Serra,et al.  Diiron Aminoalkylidene Complexes , 1995 .

[74]  Wolfgang Bermel,et al.  Gradient selection in inverse heteronuclear correlation spectroscopy , 1993 .

[75]  N. Rice,et al.  Nomenclature for liquid-liquid distribution (solvent extraction) (IUPAC Recommendations 1993) , 1993 .

[76]  R. Jacobson,et al.  Reactions of Cp2Fe2(CO)2(.mu.-CO)(.mu.-CSR)+ bridging-carbyne complexes with nucleophiles , 1989 .

[77]  B. Perlmutter-Hayman,et al.  Drug-binding to biological macromolecules. A kinetic study of the system chlorodiazepoxide (Librium) and bovine serum albumin , 1986 .

[78]  R. J. Angelici,et al.  Synthesis and reactivity of the bridging thiocarbyne radical, Cp2Fe2(CO)2(.mu.-CO)(.mu.-CSMe).cntdot. , 1986 .

[79]  S. Marder,et al.  Conversion of diiron-bridging alkenyl complexes to monoiron alkenyl compounds and to alkenes , 1986 .

[80]  P. Dyson,et al.  Piano Stool Aminoalkylidene‐Ferracyclopentenone Complexes from Bimetallic Precursors: Synthesis and Cytotoxicity Data , 2019 .

[81]  Antje Sommer,et al.  Principles Of Fluorescence Spectroscopy , 2016 .

[82]  P. Dyson,et al.  The development of RAPTA compounds for the treatment of tumors , 2016 .

[83]  A. Martinuzzi,et al.  Oestrogens ameliorate mitochondrial dysfunction in Leber's hereditary optic neuropathy. , 2011, Brain : a journal of neurology.

[84]  V. Zanotti,et al.  Selective C–C bond formation at diiron µ-aminocarbyne complexes† , 1997 .

[85]  John C. Dearden,et al.  The Measurement of Partition Coefficients , 1988 .