Hölder–Lipschitz Norms and Their Duals on Spaces with Semigroups, with Applications to Earth Mover’s Distance
暂无分享,去创建一个
[1] I. Holopainen. Riemannian Geometry , 1927, Nature.
[2] J. Cooper,et al. SEMI‐GROUPS OF OPERATORS AND APPROXIMATION , 1969 .
[3] E. Stein. Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. , 1970 .
[4] H. Triebel. Theory Of Function Spaces , 1983 .
[5] Gerald B. Folland,et al. Real Analysis: Modern Techniques and Their Applications , 1984 .
[6] I. Chavel. Eigenvalues in Riemannian geometry , 1984 .
[7] V. Zolotarev. One-dimensional stable distributions , 1986 .
[8] S. Yau,et al. On the parabolic kernel of the Schrödinger operator , 1986 .
[9] H. Triebel,et al. Topics in Fourier Analysis and Function Spaces , 1987 .
[10] V. N. Temli︠a︡kov. Approximation of periodic functions , 1993 .
[11] Y. Meyer. Wavelets and Operators , 1993 .
[12] I. Johnstone,et al. Neo-classical minimax problems, thresholding and adaptive function estimation , 1996 .
[13] W. Farkas. Atomic and Subatomic Decompositions in Anisotropic Function Spaces , 2000 .
[14] J. Heinonen. Lectures on Analysis on Metric Spaces , 2000 .
[15] Michael H. Neumann. MULTIVARIATE WAVELET THRESHOLDING IN ANISOTROPIC FUNCTION SPACES , 2000 .
[16] Moses Charikar,et al. Similarity estimation techniques from rounding algorithms , 2002, STOC '02.
[17] Dudley,et al. Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .
[18] Serguei Dachkovski,et al. Anisotropic function spaces and related semi–linear hypoelliptic equations , 2003 .
[19] Mikhail Belkin,et al. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.
[20] R. Coifman,et al. Diffusion Wavelets , 2004 .
[21] Leonidas J. Guibas,et al. The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.
[22] Ann B. Lee,et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[23] B. Nadler,et al. Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.
[24] Stéphane Lafon,et al. Diffusion maps , 2006 .
[25] Arthur D. Szlam,et al. Diffusion wavelet packets , 2006 .
[26] Xiaojun Wan,et al. A novel document similarity measure based on earth mover's distance , 2007, Inf. Sci..
[27] David W. Jacobs,et al. Approximate earth mover’s distance in linear time , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.
[28] Mauro Maggioni,et al. Multiscale Estimation of Intrinsic Dimensionality of Data Sets , 2009, AAAI Fall Symposium: Manifold Learning and Its Applications.
[29] Maxim J. Goldberg,et al. Some Remarks on Diffusion Distances , 2010, J. Appl. Math..
[30] Michael Lindenbaum,et al. Nonnegative Matrix Factorization with Earth Mover's Distance Metric for Image Analysis , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[31] Giovanni Soda,et al. Using Earth Mover's Distance in the Bag-of-Visual-Words Model for Mathematical Symbol Retrieval , 2011, 2011 International Conference on Document Analysis and Recognition.
[32] Maxim J. Goldberg,et al. An efficient tree-based computation of a metric comparable to a natural diffusion distance , 2012 .
[33] Lixin Yan,et al. Calderón reproducing formulas and new Besov spaces associated with operators , 2012 .
[34] A. Grigor’yan,et al. Heat kernel and Lipschitz-Besov spaces , 2015 .
[35] E. Stein. Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. (AM-63), Volume 63 , 2016 .