Hölder–Lipschitz Norms and Their Duals on Spaces with Semigroups, with Applications to Earth Mover’s Distance

We introduce a family of bounded, multiscale distances on any space equipped with an operator semigroup. In many examples, these distances are equivalent to a snowflake of the natural distance on the space. Under weak regularity assumptions on the kernels defining the semigroup, we derive simple characterizations of the Hölder–Lipschitz norm and its dual with respect to these distances. As the dual norm of the difference of two probability measures is the Earth Mover’s Distance (EMD) between these measures, our characterizations give simple formulas for a metric equivalent to EMD. We extend these results to the mixed Hölder–Lipschitz norm and its dual on the product of spaces, each of which is equipped with its own semigroup. Additionally, we derive an approximation theorem for mixed Lipschitz functions in this setting.

[1]  I. Holopainen Riemannian Geometry , 1927, Nature.

[2]  J. Cooper,et al.  SEMI‐GROUPS OF OPERATORS AND APPROXIMATION , 1969 .

[3]  E. Stein Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. , 1970 .

[4]  H. Triebel Theory Of Function Spaces , 1983 .

[5]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[6]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[7]  V. Zolotarev One-dimensional stable distributions , 1986 .

[8]  S. Yau,et al.  On the parabolic kernel of the Schrödinger operator , 1986 .

[9]  H. Triebel,et al.  Topics in Fourier Analysis and Function Spaces , 1987 .

[10]  V. N. Temli︠a︡kov Approximation of periodic functions , 1993 .

[11]  Y. Meyer Wavelets and Operators , 1993 .

[12]  I. Johnstone,et al.  Neo-classical minimax problems, thresholding and adaptive function estimation , 1996 .

[13]  W. Farkas Atomic and Subatomic Decompositions in Anisotropic Function Spaces , 2000 .

[14]  J. Heinonen Lectures on Analysis on Metric Spaces , 2000 .

[15]  Michael H. Neumann MULTIVARIATE WAVELET THRESHOLDING IN ANISOTROPIC FUNCTION SPACES , 2000 .

[16]  Moses Charikar,et al.  Similarity estimation techniques from rounding algorithms , 2002, STOC '02.

[17]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[18]  Serguei Dachkovski,et al.  Anisotropic function spaces and related semi–linear hypoelliptic equations , 2003 .

[19]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[20]  R. Coifman,et al.  Diffusion Wavelets , 2004 .

[21]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[22]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[24]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[25]  Arthur D. Szlam,et al.  Diffusion wavelet packets , 2006 .

[26]  Xiaojun Wan,et al.  A novel document similarity measure based on earth mover's distance , 2007, Inf. Sci..

[27]  David W. Jacobs,et al.  Approximate earth mover’s distance in linear time , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Mauro Maggioni,et al.  Multiscale Estimation of Intrinsic Dimensionality of Data Sets , 2009, AAAI Fall Symposium: Manifold Learning and Its Applications.

[29]  Maxim J. Goldberg,et al.  Some Remarks on Diffusion Distances , 2010, J. Appl. Math..

[30]  Michael Lindenbaum,et al.  Nonnegative Matrix Factorization with Earth Mover's Distance Metric for Image Analysis , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Giovanni Soda,et al.  Using Earth Mover's Distance in the Bag-of-Visual-Words Model for Mathematical Symbol Retrieval , 2011, 2011 International Conference on Document Analysis and Recognition.

[32]  Maxim J. Goldberg,et al.  An efficient tree-based computation of a metric comparable to a natural diffusion distance , 2012 .

[33]  Lixin Yan,et al.  Calderón reproducing formulas and new Besov spaces associated with operators , 2012 .

[34]  A. Grigor’yan,et al.  Heat kernel and Lipschitz-Besov spaces , 2015 .

[35]  E. Stein Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. (AM-63), Volume 63 , 2016 .