Evaluation of Cirrus Parameterizations for Radiative Flux Computations in Climate Models Using TOVS-ScaRaB Satellite Observations

Abstract Combined simultaneous satellite observations are used to evaluate the performance of parameterizations of the microphysical and optical properties of cirrus clouds used for radiative flux computations in climate models. Atmospheric and cirrus properties retrieved from Television and Infrared Observation Satellite (TIROS-N) Operational Vertical Sounder (TOVS) observations are given as input to the radiative transfer model developed for the Met Office climate model to simulate radiative fluxes at the top of the atmosphere (TOA). Simulated cirrus shortwave (SW) albedos are then compared to those retrieved from collocated Scanner for Radiation Budget (ScaRaB) observations. For the retrieval, special care has been given to angular direction models. Three parameterizations of cirrus ice crystal optical properties are represented in the Met Office radiative transfer model. These parameterizations are based on different physical approximations and different hypotheses on crystal habit. One parameterizati...

[1]  J. Reichardt,et al.  The Impact of Ice Crystal Shapes, Size Distributions, and Spatial Structures of Cirrus Clouds on Solar Radiative Fluxes. , 2005 .

[2]  Claudia J. Stubenrauch,et al.  Retrieval of effective ice crystal size in the infrared: Sensitivity study and global measurements from TIROS‐N Operational Vertical Sounder , 2003 .

[3]  Andrew J. Heymsfield,et al.  Precipitation Development in Stratiform Ice Clouds: A Microphysical and Dynamical Study , 1977 .

[4]  Alain Chedin,et al.  A Neural Network Approach for a Fast and Accurate Computation of a Longwave Radiative Budget , 1998 .

[5]  B. Soden,et al.  Large-scale ice clouds in the GFDL SKYHI general circulation model , 1997 .

[6]  David L. Mitchell,et al.  Impact of a new scheme for optical properties of ice crystals on climates of two GCMs , 2000 .

[7]  Claudia J. Stubenrauch,et al.  Clouds as Seen by Satellite Sounders (3I) and Imagers (ISCCP). Part III: Spatial Heterogeneity and Radiative Effects , 1999 .

[8]  Timothy J. Garrett,et al.  Small, highly reflective ice crystals in low‐latitude cirrus , 2003 .

[9]  A. Chédin,et al.  Clouds as Seen by Satellite Sounders (3I) and Imagers (ISCCP). Part II: A New Approach for Cloud Parameter Determination in the 3I Algorithms , 1999 .

[10]  Michael I. Mishchenko,et al.  Light scattering by randomly oriented axially symmetric particles , 1991 .

[11]  Claudia J. Stubenrauch,et al.  Cloud Properties and Their Seasonal and Diurnal Variability from TOVS Path-B , 2006 .

[12]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[13]  The Role of Clear-Sky Identification in the Study of Cloud Radiative Effects: Combined Analysis from ISCCP and the Scanner of Radiation Budget , 2002 .

[14]  Stephan Havemann,et al.  A new parametrization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM , 2007 .

[15]  Bruce A. Wielicki,et al.  Top-of-Atmosphere Radiative Fluxes: Validation of ERBE Scanner Inversion Algorithm Using Nimbus-7 ERB Data , 1992 .

[16]  P. Bhartia,et al.  Average ozone profiles for 1979 from the Nimbus 7 SBUV instrument , 1984 .

[17]  W. Petersen,et al.  Microphysical Observations of Tropical Clouds , 2002 .

[18]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[19]  K. Liou,et al.  Single-scattering properties of complex ice crystals in terrestrial atmosphere , 1998 .

[20]  H. Barker,et al.  Microphysical properties of continental clouds from in situ measurements , 2001 .

[21]  Q. Fu An Accurate Parameterization of the Infrared Radiative Properties of Cirrus Clouds for Climate Models , 1996 .

[22]  Kerry Emanuel,et al.  A Parameterization of the Cloudiness Associated with Cumulus Convection; Evaluation Using TOGA COARE Data , 2001 .

[23]  Norman G. Loeb,et al.  Application of an Artificial Neural Network Simulation for Top-of-Atmosphere Radiative Flux Estimation from CERES , 2003 .

[24]  Robert S. Kandel,et al.  The ScaRaB Earth Radiation Budget Dataset , 1998 .

[25]  George A. Isaac,et al.  Parameterization of effective ice particle size for high‐latitude clouds , 2002 .

[26]  Claudia J. Stubenrauch,et al.  Cloud heights from TOVS Path‐B: Evaluation using LITE observations and distributions of highest cloud layers , 2005 .

[27]  M. Poellot,et al.  A GCM parameterization for bimodal size spectra and ice mass removal rates in mid-latitude cirrus clouds , 2001 .

[28]  Zhanqing Li,et al.  A Study toward an Improved Understanding of the Relationship between Visible and Shortwave Measurements , 1999 .

[29]  R. Kandel,et al.  Inversion and space-time-averaging algorithms for ScaRaB (Scanner for the Earth Radiation Budget). Comparison with ERBE , 1995 .

[30]  A. Chedin,et al.  The Improved Initialization Inversion Method: A High Resolution Physical Method for Temperature Retrievals from Satellites of the TIROS-N Series. , 1985 .

[31]  David L. Mitchell,et al.  Modeling cirrus clouds. Part II: Treatment of radiative properties , 1996 .

[32]  J. Key,et al.  Tools for Atmospheric Radiative Transfer: Streamer and FluxNet. Revised , 1998 .

[33]  K. Liou,et al.  Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. , 1996, Applied optics.

[34]  Claudia J. Stubenrauch,et al.  Characteristics of the TOVS Pathfinder Path-B Dataset , 1999 .

[35]  P. Francis,et al.  A scattering phase function for ice cloud: Tests of applicability using aircraft and satellite multi‐angle multi‐wavelength radiance measurements of cirrus , 2001 .

[36]  Warren J. Wiscombe,et al.  Efficiency factors in Mie scattering , 1980 .

[37]  A. Baran,et al.  Simulation of infrared scattering from ice aggregates by use of a size-shape distribution of circular ice cylinders. , 2003, Applied optics.

[38]  M. Desbois,et al.  Cloud Field Identification for Earth Radiation Budget Studies. Part II: Cloud Field Classification for the ScaRaB Radiometer , 1996 .

[39]  A. Slingo,et al.  Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model , 1996 .

[40]  W. Menzel,et al.  Eight Years of High Cloud Statistics Using HIRS , 1999 .

[41]  Norman G. Loeb,et al.  Top-of-Atmosphere Albedo Estimation from Angular Distribution Models Using Scene Identification from Satellite Cloud Property Retrievals , 2000 .

[42]  Greg Michael McFarquhar,et al.  Microphysical Characteristics of Three Anvils Sampled during the Central Equatorial Pacific Experiment , 1996 .

[43]  C. Stubenrauch,et al.  Correlations between microphysical properties of large-scale semi-transparent cirrus and the state of the atmosphere , 2004 .

[44]  Bruce A. Wielicki,et al.  Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth's Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part II; Validation , 2003 .

[45]  A. Macke,et al.  A study of bidirectional reflectance functions for broken cloud fields over ocean , 1995 .

[46]  J. Blanchet,et al.  The Canadian Climate Centre Second-Generation General Circulation Model and Its Equilibrium Climate , 1992 .

[47]  Patrick Minnis,et al.  Inference of Cirrus Cloud Properties Using Satellite-observed Visible and Infrared Radiances. Part II: Verification of Theoretical Cirrus Radiative Properties , 1993 .

[48]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[49]  Andrew J. Heymsfield,et al.  A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content , 1984 .

[50]  Francois-Marie Breon,et al.  Reflectance of broken cloud fields : simulation and parameterization , 1992 .

[51]  J. Crowther,et al.  Investigating k distribution methods for parameterizing gaseous absorption in the Hadley Centre Climate Model , 1999 .