Consistent Time-Integration Schemes for Flexible Multibody Systems with Friction and Impacts

This work deals with nonsmooth mechanical systems and their discretization for numerical simulation. The mechanical systems consist of rigid and flexible bodies, joints as well as contacts and impacts with dry friction. We present a framework, which consistently treats velocity jumps, e.g., due to impacts, and benefits from nice properties of established integration methods. In impulsive as well as nonimpulsive intervals, constraints are implicitly formulated on velocity level in terms of an augmented Lagrangian technique. They are satisfied exactly without any penetration and solved by semi-smooth Newton methods. We present time-discontinuous Galerkin methods, which embed classical timestepping schemes from nonsmooth mechanics and yield consistent higher-order time-integration methods including impulsive forces. They transform higher order trial functions of event-driven integration schemes into consistent timestepping schemes for nonsmooth mechanical systems with friction and impacts. Splitting separates the portion of impulsive contact forces from the portion of non-impulsive contact forces. Impacts are included within the discontinuity of the piecewise continuous trial functions, that is, with first-order accuracy. Non-impulsive contact forces are integrated with respect to the local order of the trial functions. As a consequence, the computing time can be significantly reduced. A further abstraction shows that also time-integration methods from computational mechanics with high-frequency damping profit from impulsive corrections. We compare the generalized-α method, the Bathe method and the ED-α method. These implicit time-integration schemes are only chosen as illustrative examples. Each base integration scheme tailored for a specific application can be embedded in the concept of mixed timestepping schemes, like it is introduced and presented in the present work. Mixed timestepping schemes are formulated on velocity level. For preservation of geometric constraints, we offer the extension to projected timestepping schemes. The Gear-Gupta-Leimkuhler method or stabilized index 2 formulation enforces constraints on position and velocity level at the same time. It yields a robust numerical discretization avoiding the drift-off effect. Adding the position level constraint to a timestepping scheme on velocity level maintains physical consistency of the impulsive discretization. We demonstrate the capability of our formalism with various nonlinear and flexible multi-contact examples with friction and impacts. It is shown that the newly proposed integration schemes yield a unified behavior for the description of contact mechanical problems.

[1]  Laetitia Paoli,et al.  An existence result for non-smooth vibro-impact problems , 2005 .

[2]  J. Júdice Algorithms for Linear Complementarity Problems , 1994 .

[3]  Thomas Lenarz,et al.  Lecture Notes in Applied and Computational Mechanics Volume 74 , 2014 .

[4]  Tamer M. Wasfy,et al.  Computational strategies for flexible multibody systems , 2003 .

[5]  Yunian Shen,et al.  Painlevé paradox during oblique impact with friction , 2011 .

[6]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[7]  Peter Deuflhard,et al.  Scientific Computing with Ordinary Differential Equations , 2002 .

[8]  V. Acary,et al.  An introduction to Siconos , 2007 .

[9]  Jan Kleinert,et al.  An Inexact Interior Point Method for the Large-Scale Simulation of Granular Material , 2014 .

[10]  C. Glocker,et al.  Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach , 2010 .

[11]  Barbara Wohlmuth,et al.  Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.

[12]  Martin Arnold,et al.  Numerical methods for simulation in applied dynamics , 2008 .

[13]  K. Deimling Multivalued Differential Equations , 1992 .

[14]  Lucas Ginzinger,et al.  Control of a rubbing rotor using an active auxiliary bearing , 2007 .

[15]  M. Marques,et al.  Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction , 1993 .

[16]  Jerrold E. Marsden,et al.  Nonsmooth Lagrangian Mechanics and Variational Collision Integrators , 2003, SIAM J. Appl. Dyn. Syst..

[17]  Peter Deuflhard,et al.  A contact‐stabilized Newmark method for dynamical contact problems , 2008 .

[18]  H. Nijmeijer,et al.  Dynamics and Bifurcations ofNon - Smooth Mechanical Systems , 2006 .

[19]  Binh Nguyen,et al.  Understanding the difference between prox and complementarity formulations for simulation of systems with contact , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  M. Jean,et al.  Dynamics in the Presence of Unilateral Contacts and Dry Friction: A Numerical Approach , 1987 .

[21]  J. G. Jalón,et al.  Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces , 2013 .

[22]  C. Glocker Formulatin of spatial contact situations in rigid multibody systems , 1999 .

[23]  Vijay Kumar,et al.  daVinci Code: A Multi-Model Simulation and Analysis Tool for Multi-Body Systems , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[24]  P. W. Christensen,et al.  Formulation and comparison of algorithms for frictional contact problems , 1998 .

[25]  Heinz Ulbrich,et al.  Computing Time Reduction Possibilities in Multibody Dynamics , 2009 .

[26]  Christian Studer,et al.  Augmented Time-Stepping Integration of Non-Smooth Dynamical Systems , 2008 .

[27]  A. Murua,et al.  Partitioned half-explicit Runge-Kutta methods for differential-algebraic systems of index 2 , 1997, Computing.

[28]  C. W. Gear,et al.  Automatic integration of Euler-Lagrange equations with constraints , 1985 .

[29]  Laetitia Paoli,et al.  A Numerical Scheme for Impact Problems II: The Multidimensional Case , 2002, SIAM J. Numer. Anal..

[30]  D. Stewart Dynamics with Inequalities: Impacts and Hard Constraints , 2011 .

[31]  Thomas Cebulla,et al.  Spatial Dynamics of Pushbelt CVTs: Model Enhancements to a Non-smooth Flexible Multibody System , 2014 .

[32]  Heinz Ulbrich,et al.  Simulation and Numerical Parameter Identification of a Biologically Inspired Bipedal Robot with Passive Elements , 2010 .

[33]  O. Bauchau Computational Schemes for Flexible, Nonlinear Multi-Body Systems , 1998 .

[34]  Friedrich Pfeiffer,et al.  New Hydraulic System Modelling , 2004 .

[35]  Arie van der Velde,et al.  Spatial Dynamics of Pushbelt CVTs: Model Enhancements , 2012 .

[36]  Ted Belytschko,et al.  Arbitrary discontinuities in space–time finite elements by level sets and X‐FEM , 2004 .

[37]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[38]  Friedrich Pfeiffer,et al.  Multibody Dynamics with Unilateral Contacts , 1996 .

[39]  Friedrich Pfeiffer,et al.  Spatial simulation of pushbelt CVTs with time-stepping schemes , 2012 .

[40]  J. Moreau Numerical aspects of the sweeping process , 1999 .

[41]  Christian Kanzow,et al.  Complementarity And Related Problems: A Survey , 1998 .

[42]  Claes Johnson Error Estimates and Adaptive Time-Step Control for a Class of One-Step Methods for Stiff Ordinary Differential Equations , 1988 .

[43]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[44]  P. Ballard The Dynamics of Discrete Mechanical Systems with Perfect Unilateral Constraints , 2000 .

[45]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[46]  J.C. Trinkle,et al.  A time-stepping scheme for quasistatic multibody systems , 2005, (ISATP 2005). The 6th IEEE International Symposium on Assembly and Task Planning: From Nano to Macro Assembly and Manufacturing, 2005..

[47]  Oreste S. Bursi,et al.  The analysis of the Generalized-α method for non-linear dynamic problems , 2002 .

[48]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[49]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[50]  K. Bathe,et al.  Insight into an implicit time integration scheme for structural dynamics , 2012 .

[51]  Peter Betsch,et al.  Variational Integrators and Energy-Momentum Schemes for Flexible Multibody Dynamics , 2010 .

[52]  Friedrich Pfeiffer,et al.  Introduction to Dynamics , 2015 .

[53]  B. Brogliato,et al.  Frictionless multiple impacts in multibody systems. II. Numerical algorithm and simulation results , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[54]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[55]  Alexandre Ern,et al.  Time-Integration Schemes for the Finite Element Dynamic Signorini Problem , 2011, SIAM J. Sci. Comput..

[56]  A. Szeri Fluid Film Lubrication: Index , 2010 .

[57]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[58]  Heinz Ulbrich,et al.  Laufregelung redundanter humanoider Roboter — ein modellbasierter Ansatz , 2012, Autom..

[59]  C. Bottasso A new look at finite elements in time: a variational interpretation of Runge-Kutta methods , 1997 .

[60]  A. R. Humphries,et al.  Dynamical Systems And Numerical Analysis , 1996 .

[61]  Carlo L. Bottasso,et al.  An Attempt at the Classification of Energy Decaying Schemes for Structural and Multibody Dynamics , 2004 .

[62]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[63]  Dominik Schötzau,et al.  Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..

[64]  H. Ulbrich,et al.  Pushbelt CVTs - A Non-Smooth Challenge , 2008 .

[65]  Carsten Carstensen,et al.  Discontinuous Galerkin time discretization in elastoplasticity: motivation, numerical algorithms, and applications , 2002 .

[66]  Heinz Ulbrich,et al.  Analysis of different time-integration methods applied to a non-smooth industrial problem , 2005 .

[67]  J. Keller Impact With Friction , 1986 .

[68]  Heinz Ulbrich,et al.  The Maxwell‐Contact , 2012 .

[69]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[70]  J. Cortés Discontinuous dynamical systems , 2008, IEEE Control Systems.

[71]  Martin Arnold,et al.  Non-stiff integrators for differential–algebraic systems of index 2 , 1998, Numerical Algorithms.

[72]  K. Bathe Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme , 2007 .

[73]  Vincent Acary,et al.  A nonsmooth Newton solver for capturing exact Coulomb friction in fiber assemblies , 2011, TOGS.

[74]  Vincent Acary,et al.  Half-explicit timestepping schemes on velocity level based on time-discontinuous Galerkin methods , 2015 .

[75]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[76]  Florence Bertails-Descoubes,et al.  A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics , 2011, ACM Trans. Graph..

[77]  B. Brogliato,et al.  Frictionless multiple impacts in multibody systems , 2009 .

[78]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[79]  T. Schindler,et al.  Concepts for the Simulation of Belt Drives - Industrial and Academic Approaches , 2010 .

[80]  Michael Heiner Möller,et al.  Consistent integrators for non-smooth dynamical systems , 2011 .

[81]  Mario di Bernardo,et al.  Piecewise smooth dynamical systems , 2008, Scholarpedia.

[82]  C. Lacoursière Ghosts and machines : regularized variational methods for interactive simulations of multibodies with dry frictional contacts , 2007 .

[83]  Heinz Ulbrich,et al.  Spatial MFR-FE Sheave with NURBS-based Contact Description , 2009 .

[84]  S. C. Low,et al.  Robotic system for no‐scar gastrointestinal surgery , 2008, The international journal of medical robotics + computer assisted surgery : MRCAS.

[85]  C. Glocker Energetic consistency conditions for standard impacts , 2012, Multibody System Dynamics.

[86]  J. Barbera,et al.  Contact mechanics , 1999 .

[87]  Friedrich Pfeiffer,et al.  Einführung in die Dynamik , 1992 .

[88]  Markus Kunze,et al.  An Introduction to Moreau’s Sweeping Process , 2000 .

[89]  Dinesh K. Pai,et al.  Geometric Numerical Integration of Inequality Constrained, Nonsmooth Hamiltonian Systems , 2010, SIAM J. Sci. Comput..

[90]  Vincent Acary,et al.  Timestepping schemes for nonsmooth dynamics based on discontinuous Galerkin methods: Definition and outlook , 2014, Math. Comput. Simul..

[91]  Patrick Keogh,et al.  4A16 Model-Based Condition Monitoring of an Auxiliary Bearing following Contact Events , 2010 .

[92]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[93]  Vincent Acary,et al.  Numerical simulation of piecewise-linear models of gene regulatory networks using complementarity systems , 2012 .

[94]  J. Trinkle,et al.  On Dynamic Multi‐Rigid‐Body Contact Problems with Coulomb Friction , 1995 .

[95]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[96]  Claus Führer,et al.  Numerical Methods in Multibody Dynamics , 2013 .

[97]  Michel Saint Jean,et al.  The non-smooth contact dynamics method , 1999 .

[98]  Ahmed A. Shabana RESONANCE CONDITIONS AND DEFORMABLE BODY CO-ORDINATE SYSTEMS , 1996 .

[99]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[100]  Jintai Chung,et al.  Explicit time integration algorithms for structural dynamics with optimal numerical dissipation , 1996 .

[101]  Heinz Ulbrich,et al.  A Coupling Approach for the Numerical Integration of Non-Smooth Multibody Systems , 2013 .

[102]  B. Esefeld,et al.  A Hybrid Integration Scheme for Nonsmooth Mechanical Systems , 2011 .

[103]  Alessandro Pisano,et al.  Sliding mode control: A survey with applications in math , 2011, Math. Comput. Simul..

[104]  David Baraff,et al.  Issues in computing contact forces for non-penetrating rigid bodies , 1993, Algorithmica.

[105]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[106]  Bauchau Olivier,et al.  Flexible Multibody Dynamics , 2010 .

[107]  N. Wouw,et al.  Stability and Convergence of Mechanical Systems with Unilateral Constraints , 2008 .

[108]  Bernd Simeon Computational Flexible Multibody Dynamics , 2013 .

[109]  Zhi-Qiang Feng,et al.  The bipotential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms , 1998 .

[110]  S. Reich Symplectic integration of constrained Hamiltonian systems by composition methods , 1996 .

[111]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[112]  Ö. Ólafsson,et al.  Modeling and velocity stabilization of constrained mechanical systems , 1994 .

[113]  Wolfgang A. Wall,et al.  Dual mortar methods for computational contact mechanics – overview and recent developments , 2014 .

[114]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[115]  Jorge Ambrósio,et al.  On the contact detection for contact-impact analysis in multibody systems , 2010 .

[116]  Mihai Anitescu,et al.  GPU-Based Parallel Computing for the Simulation of Complex Multibody Systems with Unilateral and Bilateral Constraints: An Overview , 2011 .

[117]  J. Mayo,et al.  Influence of Reference Conditions on the Analysis of Impact-Induced Elastic Waves , 2002 .

[118]  Rolf Krause,et al.  Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme , 2012 .

[119]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[120]  D. Stewart,et al.  AN IMPLICIT TIME-STEPPING SCHEME FOR RIGID BODY DYNAMICS WITH INELASTIC COLLISIONS AND COULOMB FRICTION , 1996 .

[121]  Heinz Ulbrich,et al.  Non-smooth dynamics in academia and industry: recent work at TU München , 2008 .

[122]  L. Qi,et al.  A Survey of Some Nonsmooth Equations and Smoothing Newton Methods , 1999 .

[123]  M. Arnold,et al.  Convergence of the generalized-α scheme for constrained mechanical systems , 2007 .

[124]  Tomasz Koziara,et al.  A distributed memory parallel multibody Contact Dynamics code , 2011 .

[125]  Heinz Ulbrich,et al.  Analysing Dynamical Phenomenons: Introduction to MBSim , 2010 .

[126]  Hammad Mazhar,et al.  CHRONO: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics , 2013 .

[127]  Lloyd N. Trefethen,et al.  Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..

[128]  Petr Krysl Explicit momentum‐conserving integrator for dynamics of rigid bodies approximating the midpoint Lie algorithm , 2005 .

[129]  Werner Schiehlen,et al.  Multibody System Dynamics: Roots and Perspectives , 1997 .

[130]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[131]  Friedrich Pfeiffer,et al.  A Time‐Stepping Algorithm for Stiff Mechanical Systems with Unilateral Constraints , 2003 .

[132]  B. Brogliato,et al.  Numerical simulation of finite dimensional multibody nonsmooth mechanical systems , 2001 .

[133]  B. Brogliato,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[134]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[135]  H. Ulbrich,et al.  Discussion of the Gear–Gupta–Leimkuhler method for impacting mechanical systems , 2013, Multibody System Dynamics.

[136]  B. Brogliato Nonsmooth Mechanics: Models, Dynamics and Control , 1999 .

[137]  I. Davis,et al.  Foot strike patterns and collision forces in habitually barefoot versus shod runners , 2010, Nature.

[138]  Markus Friedrich Parallel co-simulation for mechatronic systems , 2011 .

[139]  Friedrich Pfeiffer,et al.  Dynamics of Pusbelt CVTs , 2007 .

[140]  P. Wriggers Computational contact mechanics , 2012 .

[141]  J. Moreau,et al.  Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .

[142]  Vincent Acary,et al.  Higher order event capturing time-stepping schemes for nonsmooth multibody systems with unilateral constraints and impacts , 2012 .

[143]  V. Acary,et al.  Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction , 2013 .

[144]  Christian Lubich,et al.  Extrapolation integrators for constrained multibody systems , 1991, IMPACT Comput. Sci. Eng..

[145]  M.A. Peshkin,et al.  Minimization of energy in quasistatic manipulation , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[146]  A. Cardona,et al.  Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme , 2014 .

[147]  B. Leimkuhler,et al.  Numerical solution of differential-algebraic equations for constrained mechanical motion , 1991 .

[148]  Michael C. Ferris,et al.  Interfaces to PATH 3.0: Design, Implementation and Usage , 1999, Comput. Optim. Appl..

[149]  M. Crisfield,et al.  Energy‐conserving and decaying Algorithms in non‐linear structural dynamics , 1999 .

[150]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[151]  T. Schindler,et al.  Mixed timestepping schemes for nonsmooth mechanics with high frequency damping , 2015, 1505.07666.

[152]  Ahmed A. Shabana,et al.  Application of deformable-body mean axis to flexible multibody system dynamics , 1986 .

[153]  Fluid-Struktur-Kopplung in elastohydrodynamischen Gleitlagern , 2015 .

[154]  V. Acary,et al.  A nonsmooth generalized‐ α scheme for flexible multibody systems with unilateral constraints , 2013 .

[155]  J. C. Simo,et al.  Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum , 1991 .

[156]  B. Leimkuhler,et al.  Stabilization and projection methods for multibody dynamics , 1990 .

[157]  S. Leyendecker,et al.  Discontinuous variational time integrators for complex multibody collisions , 2014 .

[158]  Laetitia Paoli,et al.  A Numerical Scheme for Impact Problems I: The One-Dimensional Case , 2002, SIAM J. Numer. Anal..

[159]  E. Hairer Symmetric Projection Methods for Differential Equations on Manifolds , 2000 .