Non-Linear Dynamics of Cardiac Alternans: Subcellular to Tissue-Level Mechanisms of Arrhythmia

Cardiac repolarization alternans is a rhythm disturbance of the heart in which rapid stimulation elicits a beat-to-beat alternation in the duration of action potentials and magnitude of intracellular calcium transients in individual cardiac myocytes. Although this phenomenon has been identified as a potential precursor to dangerous reentrant arrhythmias and sudden cardiac death, significant uncertainty remains regarding its mechanism and no clinically practical means of halting its occurrence or progression currently exists. Cardiac alternans has well-characterized tissue, cellular, and subcellular manifestations, the mechanisms and interplay of which are an active area of research.

[1]  Yoram Rudy,et al.  Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents. , 2007, American journal of physiology. Heart and circulatory physiology.

[2]  Trine Krogh-Madsen,et al.  Feedback-control induced pattern formation in cardiac myocytes: a mathematical modeling study. , 2010, Journal of theoretical biology.

[3]  M. C. Viola,et al.  Distinct patterns of calcium transients during early and delayed afterdepolarizations induced by isoproterenol in ventricular myocytes. , 1995, Circulation.

[4]  藤原 克次 Burst emergence of intracellular Ca[2+] waves evokes arrhythmogenic oscillatory depolarization via the Na[+]-Ca[2+] exchanger : simultaneous confocal recording of membrane potential and intracellular Ca[2+] in the heart , 2009 .

[5]  J. Nolasco,et al.  A graphic method for the study of alternation in cardiac action potentials. , 1968, Journal of applied physiology.

[6]  C. Antzelevitch,et al.  Cellular and ionic basis for T-wave alternans under long-QT conditions. , 1999, Circulation.

[7]  M. Koller,et al.  Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. , 1998, American journal of physiology. Heart and circulatory physiology.

[8]  D. Rosenbaum,et al.  Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. , 1999, Circulation.

[9]  K. Sipido Calcium overload, spontaneous calcium release, and ventricular arrhythmias. , 2006, Heart rhythm.

[10]  Gil Bub,et al.  Dynamical Mechanism for Subcellular Alternans in Cardiac Myocytes , 2009, Circulation research.

[11]  Sanjiv M. Narayan,et al.  Repolarization Alternans Reveals Vulnerability to Human Atrial Fibrillation , 2011, Circulation.

[12]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[13]  Kapil Kumar,et al.  Basis for sudden cardiac death prediction by T-wave alternans from an integrative physiology perspective. , 2009, Heart rhythm.

[14]  T. Nieminen,et al.  T-Wave Alternans as a Therapeutic Marker for Antiarrhythmic Agents , 2010, Journal of cardiovascular pharmacology.

[15]  E. Caref,et al.  Mechanism of Discordant T Wave Alternans in the In Vivo Heart , 2003, Journal of cardiovascular electrophysiology.

[16]  D. Euler Cardiac alternans: mechanisms and pathophysiological significance. , 1999, Cardiovascular research.

[17]  M. Stern,et al.  Theory of excitation-contraction coupling in cardiac muscle. , 1992, Biophysical journal.

[18]  N. Trayanova,et al.  Action potential dynamics explain arrhythmic vulnerability in human heart failure: a clinical and modeling study implicating abnormal calcium handling. , 2008, Journal of the American College of Cardiology.

[19]  A Garfinkel,et al.  Intracellular Ca(2+) dynamics and the stability of ventricular tachycardia. , 1999, Biophysical journal.

[20]  D. Rubenstein,et al.  Premature beats elicit a phase reversal of mechanoelectrical alternans in cat ventricular myocytes. A possible mechanism for reentrant arrhythmias. , 1995, Circulation.

[21]  John Guckenheimer,et al.  An Improved Parameter Estimation Method for Hodgkin-Huxley Models , 1999, Journal of Computational Neuroscience.

[22]  Alain Karma,et al.  Turing instability mediated by voltage and calcium diffusion in paced cardiac cells. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D. Williams,et al.  In situ visualization of spontaneous calcium waves within perfused whole rat heart by confocal imaging. , 1996, The American journal of physiology.

[24]  D. Rosenbaum,et al.  Mechanisms of arrythmogenic cardiac alternans. , 2007, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[25]  G. Salama Arrhythmia genesis: aberrations of voltage or Ca2+ cycling? , 2006, Heart rhythm.

[26]  Yoram Rudy,et al.  Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation , 2011, PLoS Comput. Biol..

[27]  C. Orchard,et al.  T‐Tubule Function in Mammalian Cardiac Myocytes , 2003, Circulation research.

[28]  Katherine A. Sheehan,et al.  Local calcium gradients during excitation–contraction coupling and alternans in atrial myocytes , 2003, The Journal of physiology.

[29]  José Jalife,et al.  Action potential duration restitution portraits of mammalian ventricular myocytes: role of calcium current. , 2006, Biophysical journal.

[30]  Blas Echebarria,et al.  Amplitude equation approach to spatiotemporal dynamics of cardiac alternans. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Robert F Gilmour,et al.  Control of electrical alternans in canine cardiac purkinje fibers. , 2006, Physical review letters.

[32]  A. Garfinkel,et al.  Inferring the cellular origin of voltage and calcium alternans from the spatial scales of phase reversal during discordant alternans. , 2007, Biophysical journal.

[33]  Eberhard Bodenschatz,et al.  Spatiotemporal Transition to Conduction Block in Canine Ventricle , 2002, Circulation research.

[34]  Charles Antzelevitch,et al.  Cellular and subcellular alternans in the canine left ventricle. , 2007, American journal of physiology. Heart and circulatory physiology.

[35]  J. Adelman,et al.  Erratum: Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels (Neuron (March 1999)) , 1999 .

[36]  David J. Christini,et al.  Control of Action Potential Duration Alternans in Canine Cardiac Ventricular Tissue , 2011, IEEE Transactions on Biomedical Engineering.

[37]  A. Kadish,et al.  Acidosis and ischemia increase cellular Ca2+ transient alternans and repolarization alternans susceptibility in the intact rat heart. , 2009, American journal of physiology. Heart and circulatory physiology.

[38]  Peter N. Jordan,et al.  Characterizing the contribution of voltage- and calcium-dependent coupling to action potential stability: implications for repolarization alternans. , 2007, American journal of physiology. Heart and circulatory physiology.

[39]  A. Kadish,et al.  Pacing-induced Heterogeneities in Intracellular Ca2+ Signaling, Cardiac Alternans, and Ventricular Arrhythmias in Intact Rat Heart , 2006, Circulation research.

[40]  Daniel J Gauthier,et al.  Condition for alternans and its control in a two-dimensional mapping model of paced cardiac dynamics. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  A. Garfinkel,et al.  From Pulsus to Pulseless: The Saga of Cardiac Alternans , 2006, Circulation research.

[42]  B. G. Bass Restitution of the action potential in cat papillary muscle. , 1975, The American journal of physiology.

[43]  L. Blatter,et al.  Subcellular Ca2+ alternans represents a novel mechanism for the generation of arrhythmogenic Ca2+ waves in cat atrial myocytes , 2002, The Journal of physiology.

[44]  Donald M Bers,et al.  Cardiac Alternans Do Not Rely on Diastolic Sarcoplasmic Reticulum Calcium Content Fluctuations , 2006, Circulation research.

[45]  M. Franz The Electrical Restitution Curve Revisited: , 2003, Journal of cardiovascular electrophysiology.

[46]  Abhijit Patwardhan,et al.  Mechanism of Repolarization Alternans Has Restitution of Action Potential Duration Dependent and Independent Components , 2006, Journal of cardiovascular electrophysiology.

[47]  H. T. ter Keurs,et al.  Calcium and arrhythmogenesis. , 2007, Physiological reviews.

[48]  Michael D. Stern,et al.  Local Control Models of Cardiac Excitation–Contraction Coupling , 1999, The Journal of general physiology.

[49]  T. Nieminen,et al.  Usefulness of T‐Wave Alternans in Sudden Death Risk Stratification and Guiding Medical Therapy , 2010, Annals of noninvasive electrocardiology : the official journal of the International Society for Holter and Noninvasive Electrocardiology, Inc.

[50]  M. Diaz,et al.  Sarcoplasmic Reticulum Calcium Content Fluctuation Is the Key to Cardiac Alternans , 2004, Circulation research.

[51]  D. Bers Calcium cycling and signaling in cardiac myocytes. , 2008, Annual review of physiology.

[52]  W Yuan,et al.  Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. , 1995, The American journal of physiology.

[53]  A. Karma,et al.  Off-site control of repolarization alternans in cardiac fibers. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Juan G Restrepo,et al.  Positive Feedback Mechanisms among Local Ca Releases, NCX, and ICaL Ignite Pacemaker Action Potentials. , 2018, Biophysical journal.

[55]  T Takishima,et al.  Spatial features of calcium transients during early and delayed afterdepolarizations. , 1993, The American journal of physiology.

[56]  D. Rosenbaum,et al.  Molecular correlates of repolarization alternans in cardiac myocytes. , 2005, Journal of molecular and cellular cardiology.

[57]  A. Garfinkel,et al.  Preventing ventricular fibrillation by flattening cardiac restitution. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[58]  D. T. Yue,et al.  Calmodulin Is the Ca2+ Sensor for Ca2+-Dependent Inactivation of L-Type Calcium Channels , 1999, Neuron.

[59]  R. Gilmour,et al.  Electrical restitution and spatiotemporal organization during ventricular fibrillation. , 1999, Circulation research.

[60]  J. Jalife,et al.  Cardiac Electrophysiology: From Cell to Bedside , 1990 .

[61]  Katherine A. Sheehan,et al.  Functional coupling between glycolysis and excitation—contraction coupling underlies alternans in cat heart cells , 2000, The Journal of physiology.

[62]  D. Bers Cardiac excitation–contraction coupling , 2002, Nature.

[63]  Alain Karma,et al.  Coupled dynamics of voltage and calcium in paced cardiac cells. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  Robert F. Gilmour,et al.  Nonlinear dynamics of heart rhythm disorders , 2007 .

[65]  R. Winslow,et al.  An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release. , 2002, Biophysical journal.

[66]  Joshua I. Goldhaber,et al.  Action Potential Duration Restitution and Alternans in Rabbit Ventricular Myocytes: The Key Role of Intracellular Calcium Cycling , 2005, Circulation research.

[67]  W. Lederer,et al.  Twenty years of calcium imaging: cell physiology to dye for. , 2005, Molecular interventions.

[68]  S. Narayan T-wave alternans and the susceptibility to ventricular arrhythmias. , 2006, Journal of the American College of Cardiology.

[69]  R. Gilmour,et al.  Memory and complex dynamics in cardiac Purkinje fibers. , 1997, The American journal of physiology.

[70]  Juan Pablo Martínez,et al.  Microvolt T-wave alternans physiological basis, methods of measurement, and clinical utility--consensus guideline by International Society for Holter and Noninvasive Electrocardiology. , 2011, Journal of the American College of Cardiology.

[71]  J. Ruskin,et al.  Electrical alternans and vulnerability to ventricular arrhythmias. , 1994, The New England journal of medicine.

[72]  Shien-Fong Lin,et al.  Two Types of Ventricular Fibrillation in Isolated Rabbit Hearts: Importance of Excitability and Action Potential Duration Restitution , 2002, Circulation.

[73]  Robert F Gilmour,et al.  Ionic mechanism of electrical alternans. , 2002, American journal of physiology. Heart and circulatory physiology.

[74]  Natalia A Trayanova,et al.  Rate-dependent action potential alternans in human heart failure implicates abnormal intracellular calcium handling. , 2009, Heart rhythm.

[75]  J. Weiss,et al.  The chicken or the egg? Voltage and calcium dynamics in the heart. , 2007, American journal of physiology. Heart and circulatory physiology.

[76]  CharlesAntzelevitch,et al.  Cellular and Ionic Basis for T-Wave Alternans Under Long-QT Conditions , 1999 .

[77]  Richard A Gray,et al.  Effect of Action Potential Duration and Conduction Velocity Restitution and Their Spatial Dispersion on Alternans and the Stability of Arrhythmias , 2002, Journal of cardiovascular electrophysiology.

[78]  Daniel J. Gauthier,et al.  Prevalence of Rate-Dependent Behaviors in Cardiac Muscle , 1999 .

[79]  Roger J Hajjar,et al.  Targeted SERCA2a Gene Expression Identifies Molecular Mechanism and Therapeutic Target for Arrhythmogenic Cardiac Alternans , 2009, Circulation. Arrhythmia and electrophysiology.

[80]  Lai-Hua Xie,et al.  Arrhythmogenic consequences of intracellular calcium waves. , 2009, American journal of physiology. Heart and circulatory physiology.

[81]  T. Nakagami,et al.  Burst Emergence of Intracellular Ca2+ Waves Evokes Arrhythmogenic Oscillatory Depolarization via the Na+–Ca2+ Exchanger: Simultaneous Confocal Recording of Membrane Potential and Intracellular Ca2+ in the Heart , 2008, Circulation research.

[82]  Richard A Gray,et al.  Restitution Dynamics During Pacing and Arrhythmias in Isolated Pig Hearts , 2004, Journal of cardiovascular electrophysiology.

[83]  M. Cutler,et al.  Explaining the clinical manifestations of T wave alternans in patients at risk for sudden cardiac death. , 2009, Heart rhythm.

[84]  Yohannes Shiferaw,et al.  Mechanisms Underlying the Formation and Dynamics of Subcellular Calcium Alternans in the Intact Rat Heart , 2009, Circulation research.

[85]  Trine Krogh-Madsen,et al.  Action potential duration dispersion and alternans in simulated heterogeneous cardiac tissue with a structural barrier. , 2007, Biophysical journal.

[86]  David S. Rosenbaum,et al.  Role of Calcium Cycling Versus Restitution in the Mechanism of Repolarization Alternans , 2004, Circulation research.

[87]  J. Ulrich [Physiology of the heart]. , 1950, Zeitschrift fur Kreislaufforschung.

[88]  Alan Garfinkel,et al.  Modifying L-type calcium current kinetics: consequences for cardiac excitation and arrhythmia dynamics. , 2007, Biophysical journal.

[89]  M Restivo,et al.  Electrophysiological basis of arrhythmogenicity of QT/T alternans in the long-QT syndrome: tridimensional analysis of the kinetics of cardiac repolarization. , 1998, Circulation research.

[90]  M. Diaz,et al.  Depressed Ryanodine Receptor Activity Increases Variability and Duration of the Systolic Ca2+ Transient in Rat Ventricular Myocytes , 2002, Circulation research.

[91]  H. Meinhardt,et al.  A theory of biological pattern formation , 1972, Kybernetik.

[92]  A. Garfinkel,et al.  Nonlinear Dynamics of Paced Cardiac Cells , 2006, Annals of the New York Academy of Sciences.

[93]  Heping Cheng,et al.  Calcium sparks. , 2008, Physiological reviews.

[94]  Abhijit Patwardhan,et al.  Restitution of Action Potential Duration During Sequential Changes in Diastolic Intervals Shows Multimodal Behavior , 2004, Circulation research.

[95]  H M Hastings,et al.  Mechanisms for Discordant Alternans , 2001, Journal of cardiovascular electrophysiology.

[96]  A. Trafford,et al.  The sarcoplasmic reticulum and arrhythmogenic calcium release. , 2008, Cardiovascular research.

[97]  A. Garfinkel,et al.  Mechanisms of Discordant Alternans and Induction of Reentry in Simulated Cardiac Tissue , 2000, Circulation.

[98]  D. Rosenbaum,et al.  Repolarization alternans: implications for the mechanism and prevention of sudden cardiac death. , 2003, Cardiovascular research.

[99]  S. Narayan T-wave alternans testing for ventricular arrhythmias. , 2008, Progress in cardiovascular diseases.

[100]  R. Gilmour,et al.  Memory models for the electrical properties of local cardiac systems. , 1997, Journal of theoretical biology.

[101]  Mya Mya Thu,et al.  Spatially discordant alternans in cardiomyocyte monolayers. , 2008, American journal of physiology. Heart and circulatory physiology.

[102]  Alan Garfinkel,et al.  Intracellular Ca alternans: coordinated regulation by sarcoplasmic reticulum release, uptake, and leak. , 2008, Biophysical journal.

[103]  Robert F. Gilmour,et al.  Altered Dynamics of Action Potential Restitution and Alternans in Humans With Structural Heart Disease , 2005, Circulation.

[104]  D. Rosenbaum,et al.  T-wave alternans for risk stratification and prevention of sudden cardiac death , 2003, Current cardiology reports.

[105]  Michal Pásek,et al.  The role of mammalian cardiac t‐tubules in excitation–contraction coupling: experimental and computational approaches , 2009, Experimental physiology.

[106]  A Garfinkel,et al.  Model of intracellular calcium cycling in ventricular myocytes. , 2003, Biophysical journal.