Room-temperature multiple ligands-tailored SnO2 quantum dots endow in situ dual-interface binding for upscaling efficient perovskite photovoltaics with high VOC

[1]  Jae-Yup Kim,et al.  Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells , 2016 .

[2]  Abdullah M. Asiri,et al.  Stable perovskite solar cells using tin acetylacetonate based electron transporting layers , 2019, Energy & Environmental Science.

[3]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[4]  Xingwang Zhang,et al.  SnO2 : A Wonderful Electron Transport Layer for Perovskite Solar Cells. , 2018, Small.

[5]  Yang Yang,et al.  Interface and Defect Engineering for Metal Halide Perovskite Optoelectronic Devices , 2019, Advanced materials.

[6]  Miaoran Zhang,et al.  Red‐Carbon‐Quantum‐Dot‐Doped SnO2 Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells , 2019, Advanced materials.

[7]  Sisi He,et al.  Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO2 Electron Transport Layer , 2018, Advanced Functional Materials.

[8]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[9]  Shangfeng Yang,et al.  Low‐Temperature In Situ Amino Functionalization of TiO2 Nanoparticles Sharpens Electron Management Achieving over 21% Efficient Planar Perovskite Solar Cells , 2019, Advanced materials.

[10]  Liang Li,et al.  Coagulated SnO2 Colloids for High Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability. , 2019, Angewandte Chemie.

[11]  Jay B. Patel,et al.  Structured Organic–Inorganic Perovskite toward a Distributed Feedback Laser , 2016, Advanced materials.

[12]  G. Fang,et al.  Tin oxide (SnO2) as effective electron selective layer material in hybrid organic–inorganic metal halide perovskite solar cells , 2018, Journal of Energy Chemistry.

[13]  F. Crea,et al.  The inorganic speciation of tin(II) in aqueous solution , 2012 .

[14]  Dong Yang,et al.  High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2 , 2018, Nature Communications.

[15]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[16]  Jun Hee Lee,et al.  Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells , 2021, Nature.

[17]  Liduo Wang,et al.  Improved SnO2 Electron Transport Layers Solution‐Deposited at Near Room Temperature for Rigid or Flexible Perovskite Solar Cells with High Efficiencies , 2019, Advanced Energy Materials.

[18]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[19]  Yalei Zhang,et al.  Surface amino-functionalization of Sn-Beta zeolite catalyst for lactic acid production from glucose , 2019, RSC advances.

[20]  Dong Hoe Kim,et al.  Simultaneous Ligand Exchange Fabrication of Flexible Perovskite Solar Cells using Newly Synthesized Uniform Tin Oxide Quantum Dots. , 2018, The journal of physical chemistry letters.

[21]  Nam-Gyu Park,et al.  Correction to "Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer". , 2014, The journal of physical chemistry letters.

[22]  Zonglong Zhu,et al.  A Low‐Temperature, Solution Processable Tin Oxide Electron‐Transporting Layer Prepared by the Dual‐Fuel Combustion Method for Efficient Perovskite Solar Cells , 2016 .

[23]  Manish Pandey,et al.  Interfacial Sulfur Functionalization Anchoring SnO2 and CH3 NH3 PbI3 for Enhanced Stability and Trap Passivation in Perovskite Solar Cells. , 2018, ChemSusChem.

[24]  Anders Hagfeldt,et al.  Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide , 2016 .

[25]  Felix Lang,et al.  Influence of Radiation on the Properties and the Stability of Hybrid Perovskites , 2018, Advanced materials.

[26]  Chun‐Sing Lee,et al.  Zwitterionic-Surfactant-Assisted Room-Temperature Coating of Efficient Perovskite Solar Cells , 2020 .

[27]  Sang Yoon Lee,et al.  Printable organometallic perovskite enables large-area, low-dose X-ray imaging , 2017, Nature.

[28]  Z. Ren,et al.  Room‐Temperature Meniscus Coating of >20% Perovskite Solar Cells: A Film Formation Mechanism Investigation , 2019, Advanced Functional Materials.

[29]  J. Jang,et al.  Superfast Room‐Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics , 2018, Advanced materials.

[30]  M. Artemyev,et al.  Underpotential Deposition of Cadmium on Colloidal CdSe Quantum Dots: Effect of Particle Size and Surface Ligands , 2018, The Journal of Physical Chemistry C.

[31]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[32]  Hongkang Wang,et al.  Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex-situ deposition on carbon nanotubes as anode materials for lithium ion batteries , 2016 .

[33]  A. Ng,et al.  Novel Molecular Doping Mechanism for n‐Doping of SnO2 via Triphenylphosphine Oxide and Its Effect on Perovskite Solar Cells , 2019, Advanced materials.

[34]  Lan-sun Zheng,et al.  Pyridine-Functionalized Fullerene Electron Transport Layer for Efficient Planar Perovskite Solar Cells. , 2019, ACS applied materials & interfaces.

[35]  Prashant V. Kamat,et al.  Band filling with free charge carriers in organometal halide perovskites , 2014, Nature Photonics.

[36]  Sergii Yakunin,et al.  Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites , 2016, Nature Photonics.

[37]  Yang Yang,et al.  Solution-processed hybrid perovskite photodetectors with high detectivity , 2014, Nature Communications.

[38]  Dongsheng Xu,et al.  SnO2‐in‐Polymer Matrix for High‐Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability , 2018, Advanced materials.

[39]  Hongwei Lei,et al.  Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.

[40]  Yang Chai,et al.  Low‐Voltage, Optoelectronic CH3NH3PbI3−xClx Memory with Integrated Sensing and Logic Operations , 2018 .

[41]  Z. Ren,et al.  Facile synthesis of composite tin oxide nanostructures for high-performance planar perovskite solar cells , 2019, Nano Energy.

[42]  Nakita K. Noel,et al.  Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics , 2019, Energy & Environmental Science.

[43]  Yang Yang,et al.  Supersymmetric laser arrays , 2019, Nature Photonics.

[44]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[45]  Laura M. Herz,et al.  Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites. , 2016, Annual review of physical chemistry.

[46]  R. Friend,et al.  New Strategies for Defect Passivation in High‐Efficiency Perovskite Solar Cells , 2019, Advanced Energy Materials.

[47]  Cherie R. Kagan,et al.  Electronic energy transfer in CdSe quantum dot solids. , 1996, Physical review letters.

[48]  Seong Sik Shin,et al.  Efficient perovskite solar cells via improved carrier management , 2021, Nature.

[49]  Tae Woong Kim,et al.  Direct Observation of the Tunneling Phenomenon in Organometal Halide Perovskite Solar Cells and Its Influence on Hysteresis , 2018, ACS Energy Letters.

[50]  Rui Wang,et al.  A Review of Perovskites Solar Cell Stability , 2019, Advanced Functional Materials.

[51]  Jongmin Choi,et al.  Systematically Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells (η = 21.1%) , 2017 .

[52]  Jinsong Huang,et al.  Imperfections and their passivation in halide perovskite solar cells. , 2019, Chemical Society reviews.

[53]  Jingjing Zhao,et al.  Low Temperature Solution-Processed Sb:SnO2 Nanocrystals for Efficient Planar Perovskite Solar Cells. , 2016, ChemSusChem.

[54]  Jing Ren,et al.  Efficient Bifacial Passivation with Crosslinked Thioctic Acid for High‐Performance Methylammonium Lead Iodide Perovskite Solar Cells , 2019, Advanced materials.

[55]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[56]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[57]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[58]  A. Jen,et al.  Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron‐Transporting Layer , 2016, Advanced materials.

[59]  Q. Gong,et al.  Minimizing non-radiative recombination losses in perovskite solar cells , 2019, Nature Reviews Materials.

[60]  Yinchang Feng,et al.  Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene. , 2011, Journal of hazardous materials.

[61]  M. Kanatzidis,et al.  Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells , 2016 .

[62]  D. Chan,et al.  Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and Stern-Grahame layers. , 2006, Journal of colloid and interface science.

[63]  Padhraic Mulligan,et al.  Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals , 2016, Nature Photonics.

[64]  V. Klimov,et al.  Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. , 2011, Journal of the American Chemical Society.

[65]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[66]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[67]  S. Bai,et al.  High‐Quality Ruddlesden–Popper Perovskite Films Based on In Situ Formed Organic Spacer Cations , 2019, Advanced materials.

[68]  Christopher C. S. Chan,et al.  Perovskite Bifunctional Device with Improved Electroluminescent and Photovoltaic Performance through Interfacial Energy‐Band Engineering , 2019, Advanced materials.

[69]  G. Fang,et al.  Effective Carrier‐Concentration Tuning of SnO2 Quantum Dot Electron‐Selective Layers for High‐Performance Planar Perovskite Solar Cells , 2018, Advanced materials.

[70]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.

[71]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[72]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[73]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.