Vanishing viscosity as a selection principle for the Euler equations: The case of 3D shear flow
暂无分享,去创建一个
Emil Wiedemann | Edriss S. Titi | Claude Bardos | E. Titi | C. Bardos | E. Wiedemann | Emil Wiedemann | E. Titi
[1] G. Raugel,et al. Some Results on the Navier–Stokes Equations in Thin 3D Domains , 1999, chao-dyn/9908002.
[2] Emil Wiedemann,et al. Young Measures Generated by Ideal Incompressible Fluid Flows , 2011, 1101.3499.
[3] Edriss S. Titi,et al. Loss of smoothness and energy conserving rough weak solutions for the 3d Euler equations , 2009, 0906.2029.
[4] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[5] A. Majda,et al. Oscillations and concentrations in weak solutions of the incompressible fluid equations , 1987 .
[6] L. E. Fraenkel,et al. NAVIER-STOKES EQUATIONS (Chicago Lectures in Mathematics) , 1990 .
[7] Edriss S. Titi,et al. Stability of Two-Dimensional Viscous Incompressible Flows under Three-Dimensional Perturbations and Inviscid Symmetry Breaking , 2012, SIAM J. Math. Anal..
[8] P. Lions,et al. Ordinary differential equations, transport theory and Sobolev spaces , 1989 .
[9] L. Székelyhidi. Weak solutions to the incompressible Euler equations with vortex sheet initial data , 2011 .
[10] Camillo De Lellis,et al. On Admissibility Criteria for Weak Solutions of the Euler Equations , 2007, 0712.3288.
[11] R. Temam. Navier-Stokes Equations , 1977 .
[12] S. Kaniel,et al. The initial value problem for the navier-stokes equations , 1966 .