High Breakdown Voltage (−201) $\beta $ -Ga2O3 Schottky Rectifiers

<inline-formula> <tex-math notation="LaTeX">$\beta $ </tex-math></inline-formula>-Ga<sub>2</sub>O<sub>3</sub> Schottky barrier diodes were fabricated in a vertical geometry structure consisting of Ni/Au rectifying contacts without edge termination on Si-doped epitaxial layers (<inline-formula> <tex-math notation="LaTeX">$10~\mu \text{m}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$\text{n}\sim 4\times 10^{15}$ </tex-math></inline-formula> cm<inline-formula> <tex-math notation="LaTeX">$^{-3})$ </tex-math></inline-formula> on Sn-doped bulk Ga<sub>2</sub>O<sub>3</sub> substrates with full-area Ti/Au back Ohmic contacts. The reverse breakdown voltage, <inline-formula> <tex-math notation="LaTeX">${V} _ \text {BR}$ </tex-math></inline-formula>, was a function of rectifying contact area, ranging from 1600 V at <inline-formula> <tex-math notation="LaTeX">$3.1\times 10^{-6}$ </tex-math></inline-formula> cm<sup>2</sup> (20-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> diameter) to ~250 V at <inline-formula> <tex-math notation="LaTeX">$2.2{\times }10^{-3}$ </tex-math></inline-formula> cm<inline-formula> <tex-math notation="LaTeX">$^{-2}$ </tex-math></inline-formula> (0.53-mm diameter). The current density near breakdown was not strongly dependent on contact circumference but did scale with contact area, indicating that the bulk current contribution was dominant. The lowest ON-state resistance, <inline-formula> <tex-math notation="LaTeX">${R} _\text {on}$ </tex-math></inline-formula>, was 1.6 <inline-formula> <tex-math notation="LaTeX">$\text{m}\Omega \cdot $ </tex-math></inline-formula> cm<sup>2</sup> for the largest diode and 25 <inline-formula> <tex-math notation="LaTeX">$\text{m}\Omega \cdot $ </tex-math></inline-formula>cm<sup>2</sup> for the 1600-V rectifier, leading to a Baliga figure-of-merit (<inline-formula> <tex-math notation="LaTeX">${V} _\text {BR}^{2}/{R} _\text {on})$ </tex-math></inline-formula> for the latter of approximately 102.4 MW<inline-formula> <tex-math notation="LaTeX">$\cdot $ </tex-math></inline-formula>cm<inline-formula> <tex-math notation="LaTeX">$^{-2}$ </tex-math></inline-formula>. The ON-OFF ratio was measured at a forward voltage of 1.3 V and ranged from <inline-formula> <tex-math notation="LaTeX">$3\times 10^{7}$ </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">$2.5\times 10^{6}$ </tex-math></inline-formula> for reverse biases from −5 to −40 V and showed only a small dependence on temperature in the range from 25 °C to 100 °C.

[1]  Akito Kuramata,et al.  Field-Plated Ga2O3 MOSFETs With a Breakdown Voltage of Over 750 V , 2016, IEEE Electron Device Letters.

[2]  B. J. Baliga,et al.  Power semiconductor device figure of merit for high-frequency applications , 1989, IEEE Electron Device Letters.

[3]  Akito Kuramata,et al.  Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates , 2012 .

[4]  Philippe Godignon,et al.  A Survey of Wide Bandgap Power Semiconductor Devices , 2014, IEEE Transactions on Power Electronics.

[5]  K. Hobart,et al.  Editors' Choice Communication—A (001) β-Ga2O3 MOSFET with +2.9 V Threshold Voltage and HfO2 Gate Dielectric , 2016 .

[6]  R. Fornari,et al.  Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3 , 2012 .

[7]  S. Yamakoshi,et al.  Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n––Ga2O3 drift layers grown by halide vapor phase epitaxy , 2016 .

[8]  Gwangseok Yang,et al.  Electrical Characteristics of Vertical Ni/β-Ga2O3 Schottky Barrier Diodes at High Temperatures , 2017 .

[9]  Akito Kuramata,et al.  Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics , 2013 .

[10]  Akito Kuramata,et al.  1-kV vertical Ga2O3 field-plated Schottky barrier diodes , 2017 .

[11]  High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes , 2013, 1310.6824.

[12]  David I. Shahin,et al.  Thermionic Emission Analysis of TiN and Pt Schottky Contacts to β-Ga2O3 , 2017 .

[13]  Zbigniew Galazka,et al.  3.8-MV/cm Breakdown Strength of MOVPE-Grown Sn-Doped $\beta $ -Ga2O3 MOSFETs , 2016, IEEE Electron Device Letters.

[14]  Kevin D. Leedy,et al.  Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage , 2016 .

[15]  T. Chow,et al.  Smart Power Devices and ICs Using GaAs and Wide and Extreme Bandgap Semiconductors , 2017, IEEE Transactions on Electron Devices.

[16]  Akito Kuramata,et al.  Recent progress in Ga2O3 power devices , 2016 .

[17]  Shingo Saito,et al.  Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy , 2015 .

[18]  C. Meliani,et al.  Fast-Switching GaN-Based Lateral Power Schottky Barrier Diodes With Low Onset Voltage and Strong Reverse Blocking , 2012, IEEE Electron Device Letters.

[19]  Akito Kuramata,et al.  High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth , 2016 .

[20]  Shizuo Fujita,et al.  Wide-bandgap semiconductor materials: For their full bloom , 2014 .

[21]  Akito Kuramata,et al.  Development of gallium oxide power devices , 2014 .