A Novel Method of Adaptive Kalman Filter for Heading Estimation Based on an Autoregressive Model

[1]  Xiaoji Niu,et al.  Robust Pedestrian Dead Reckoning Based on MEMS-IMU for Smartphones , 2018, Sensors.

[2]  L. Mainetti,et al.  An Indoor Location-Aware System for an IoT-Based Smart Museum , 2016, IEEE Internet of Things Journal.

[3]  Md. Abid Hasan,et al.  MEMS IMU Based Pedestrian Indoor Navigation for Smart Glass , 2018, Wirel. Pers. Commun..

[4]  A. H. Mohamed,et al.  Adaptive Kalman Filtering for INS/GPS , 1999 .

[5]  Youngnam Han,et al.  SmartPDR: Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization , 2015, IEEE Sensors Journal.

[6]  Xiaoji Niu,et al.  A Hybrid WiFi/Magnetic Matching/PDR Approach for Indoor Navigation With Smartphone Sensors , 2016, IEEE Communications Letters.

[7]  Qian Song,et al.  Foot-mounted Pedestrian Navigation based on Particle Filter with an Adaptive Weight Updating Strategy , 2014, Journal of Navigation.

[8]  Dongjian He,et al.  Adaptive Kalman filtering based on optimal autoregressive predictive model , 2017, GPS Solutions.

[9]  Jian Chen,et al.  An INS/WiFi Indoor Localization System Based on the Weighted Least Squares , 2018, Sensors.

[10]  Ye Kuang,et al.  A UWB/Improved PDR Integration Algorithm Applied to Dynamic Indoor Positioning for Pedestrians , 2017, Sensors.

[11]  Jinling Wang,et al.  Effective Adaptive Kalman Filter for MEMS-IMU/Magnetometers Integrated Attitude and Heading Reference Systems , 2012, Journal of Navigation.

[12]  Robert Harle,et al.  A Survey of Indoor Inertial Positioning Systems for Pedestrians , 2013, IEEE Communications Surveys & Tutorials.

[13]  Linyuan Xia,et al.  Heading Estimation for Pedestrian Dead Reckoning Based on Robust Adaptive Kalman Filtering , 2018, Sensors.

[14]  Guoliang Chen,et al.  Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3D Indoor Localization , 2015, Sensors.

[15]  Shubi Zhang,et al.  A Novel Adaptively-Robust Strategy Based on the Mahalanobis Distance for GPS/INS Integrated Navigation Systems , 2018, Sensors.

[16]  Jian Wang,et al.  A Bluetooth/PDR Integration Algorithm for an Indoor Positioning System , 2015, Sensors.

[17]  Qian Song,et al.  Use of Magnetic Field for Mitigating Gyroscope Errors for Indoor Pedestrian Positioning † , 2018, Sensors.

[18]  Yuan Zhang,et al.  Pedestrian dead reckoning for MARG navigation using a smartphone , 2014, EURASIP J. Adv. Signal Process..

[19]  Jizhong Xiao,et al.  A Linear Kalman Filter for MARG Orientation Estimation Using the Algebraic Quaternion Algorithm , 2016, IEEE Transactions on Instrumentation and Measurement.

[20]  Jian Wang,et al.  Integrated WiFi/PDR/Smartphone Using an Adaptive System Noise Extended Kalman Filter Algorithm for Indoor Localization , 2016, ISPRS Int. J. Geo Inf..

[21]  Guobin Chang,et al.  An adaptive fading Kalman filter based on Mahalanobis distance , 2015 .

[22]  Jarmo Takala,et al.  Algorithm for pedestrian navigation combining IMU measurements and gait models , 2013 .

[23]  Kenneth Gade,et al.  The Seven Ways to Find Heading , 2016 .

[24]  Sheng Liu,et al.  Quaternion-Based Unscented Kalman Filter for Accurate Indoor Heading Estimation Using Wearable Multi-Sensor System , 2015, Sensors.

[25]  C. Rizos,et al.  Improving Adaptive Kalman Estimation in GPS/INS Integration , 2007, Journal of Navigation.

[26]  Valérie Renaudin,et al.  Complete Triaxis Magnetometer Calibration in the Magnetic Domain , 2010, J. Sensors.

[27]  Jie Yang,et al.  Accurate WiFi Based Localization for Smartphones Using Peer Assistance , 2014, IEEE Transactions on Mobile Computing.

[28]  Valérie Renaudin,et al.  Use of Earth’s Magnetic Field for Mitigating Gyroscope Errors Regardless of Magnetic Perturbation , 2011, Sensors.

[29]  Naser El-Sheimy,et al.  PDR/INS/WiFi Integration Based on Handheld Devices for Indoor Pedestrian Navigation , 2015, Micromachines.

[30]  Naser El-Sheimy,et al.  Low-Cost MEMS-Based Pedestrian Navigation Technique for GPS-Denied Areas , 2013, J. Sensors.