Development of Pareto-based evolutionary model integrated with dynamic goal programming and successive linear objective reduction

This paper presents a new Pareto-based evolutionary model incorporated with preference-ordering and objective-dimension reduction to improve the multi-directional searches for multi-objective problems.It induces a convergence toward the Pareto-optimal front by adjusting aspiration levels allocated to objectives and by excluding redundant objectives during optimization.Its usefulness was validated for multi-objective test problems comparing to conventional single- and multi-objective optimization models. This study investigates the coupling effects of objective-reduction and preference-ordering schemes on the search efficiency in the evolutionary process of multi-objective optimization. The difficulty in solving a many-objective problem increases with the number of conflicting objectives. Degenerated objective space can enhance the multi-directional search toward the multi-dimensional Pareto-optimal front by eliminating redundant objectives, but it is difficult to capture the true Pareto-relation among objectives in the non-optimal solution domain. Successive linear objective-reduction for the dimensionality-reduction and dynamic goal programming for preference-ordering are developed individually and combined with a multi-objective genetic algorithm in order to reflect the aspiration levels for the essential objectives adaptively during optimization. The performance of the proposed framework is demonstrated in redundant and non-redundant benchmark test problems. The preference-ordering approach induces the non-dominated solutions near the front despite enduring a small loss in diversity of the solutions. The induced solutions facilitate a degeneration of the Pareto-optimal front using successive linear objective-reduction, which updates the set of essential objectives by excluding non-conflicting objectives from the set of total objectives based on a principal component analysis. Salient issues related to real-world problems are discussed based on the results of an oil-field application.

[1]  J.-H. Kim,et al.  Fuzzy rule extraction for shooting action controller of soccer robot , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[2]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[3]  Kiyoshi Tanaka,et al.  Controlling Dominance Area of Solutions and Its Impact on the Performance of MOEAs , 2007, EMO.

[4]  Peter J. Fleming,et al.  Evolutionary many-objective optimisation: an exploratory analysis , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[5]  Rolf Drechsler,et al.  Multi-objective Optimisation Based on Relation Favour , 2001, EMO.

[6]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[7]  Rb Flavell,et al.  A new goal programming formulation , 1976 .

[8]  Hisao Ishibuchi,et al.  Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms , 2006, PPSN.

[9]  Qiang Long,et al.  A constraint handling technique for constrained multi-objective genetic algorithm , 2014, Swarm Evol. Comput..

[10]  Evan J. Hughes,et al.  Radar Waveform Optimisation as a Many-Objective Application Benchmark , 2007, EMO.

[11]  John Ahmet Erkoyuncu,et al.  Through-Life Engineering Services , 2013 .

[12]  Jong-Hwan Kim,et al.  Multiobjective quantum-inspired evolutionary algorithm for fuzzy path planning of mobile robot , 2009, 2009 IEEE Congress on Evolutionary Computation.

[13]  Tapabrata Ray,et al.  A Pareto Corner Search Evolutionary Algorithm and Dimensionality Reduction in Many-Objective Optimization Problems , 2011, IEEE Transactions on Evolutionary Computation.

[14]  Seung-Hwan Choi,et al.  Evolutionary multi-objective optimization in robot soccer system for education , 2009, IEEE Comput. Intell. Mag..

[15]  Qingfu Zhang,et al.  Objective Reduction in Many-Objective Optimization: Linear and Nonlinear Algorithms , 2013, IEEE Transactions on Evolutionary Computation.

[16]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[17]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[18]  Bo Liu,et al.  Sparse Q-learning with Mirror Descent , 2012, UAI.

[19]  Hisao Ishibuchi,et al.  Iterative approach to indicator-based multiobjective optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[20]  Yujia Wang,et al.  Particle swarm optimization with preference order ranking for multi-objective optimization , 2009, Inf. Sci..

[21]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[22]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[23]  Hamid Reza Karimi,et al.  Adaptive Real-Time Estimation on Road Disturbances Properties Considering Load Variation via Vehicle Vertical Dynamics , 2013 .

[24]  Kaisa Miettinen,et al.  A Preference Based Interactive Evolutionary Algorithm for Multi-objective Optimization: PIE , 2011, EMO.

[25]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[26]  Carlos A. Coello Coello,et al.  Objective reduction using a feature selection technique , 2008, GECCO '08.

[27]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[28]  Mehrdad Tamiz,et al.  Extensions of Pareto efficiency analysis to integer goal programming , 1999 .

[29]  Bo Liu,et al.  Regularized Off-Policy TD-Learning , 2012, NIPS.

[30]  Peter J. Fleming,et al.  Conflict, Harmony, and Independence: Relationships in Evolutionary Multi-criterion Optimisation , 2003, EMO.

[31]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[32]  Kalyanmoy Deb,et al.  Using objective reduction and interactive procedure to handle many-objective optimization problems , 2013, Appl. Soft Comput..

[33]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[34]  Kittipong Boonlong,et al.  Compressed-Objective Genetic Algorithm , 2006, PPSN.

[35]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[36]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[37]  Joe M. Kang,et al.  Pareto-based multi-objective history matching with respect to individual production performance in a heterogeneous reservoir , 2014 .

[38]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions , 2010, IEEE Transactions on Evolutionary Computation.

[39]  Hisao Ishibuchi,et al.  Behavior of EMO algorithms on many-objective optimization problems with correlated objectives , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[40]  Joseph J. Talavage,et al.  A Tradeoff Cut Approach to Multiple Objective Optimization , 1980, Oper. Res..

[41]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[42]  Joe M. Kang,et al.  Prediction of Nonlinear Production Performance in Waterflooding Project Using a Multi-Objective Evolutionary Algorithm , 2011 .

[43]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[44]  Xavier Blasco Ferragud,et al.  Integrated multiobjective optimization and a priori preferences using genetic algorithms , 2008, Inf. Sci..

[45]  Peter J. Fleming,et al.  Many-Objective Optimization: An Engineering Design Perspective , 2005, EMO.

[46]  Andrzej Jaszkiewicz,et al.  On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study , 2004, Eur. J. Oper. Res..

[47]  Jouni Lampinen,et al.  Ranking-Dominance and Many-Objective Optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[48]  Carlos A. Coello Coello,et al.  Solving Multiobjective Optimization Problems Using an Artificial Immune System , 2005, Genetic Programming and Evolvable Machines.

[49]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[50]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[51]  Yasin Hajizadeh,et al.  Towards Multiobjective History Matching: Faster Convergence and Uncertainty Quantification , 2011, ANSS 2011.

[52]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[53]  C. Balamurugan,et al.  Simultaneous optimal selection of design and manufacturing tolerances with alternative manufacturing process selection , 2011, Comput. Aided Des..

[54]  Mario Köppen,et al.  Substitute Distance Assignments in NSGA-II for Handling Many-objective Optimization Problems , 2007, EMO.

[55]  Abraham Charnes,et al.  Optimal Estimation of Executive Compensation by Linear Programming , 1955 .

[56]  Kay Chen Tan,et al.  A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[57]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[58]  Carlos A. Coello Coello,et al.  Constraint-handling in nature-inspired numerical optimization: Past, present and future , 2011, Swarm Evol. Comput..

[59]  Michael Andrew Christie,et al.  Use of Multi-Objective Algorithms in History Matching of a Real Field , 2013, ANSS 2013.

[60]  Xiaofang Guo,et al.  Using Objective Clustering for Solving Many-Objective Optimization Problems , 2013 .

[61]  Kenneth Wise,et al.  Goal Programming as a Solution Technique for the Acquisitions Allocation Problem , 2000 .

[62]  Jong-Hwan Kim,et al.  Quantum-inspired Multiobjective Evolutionary Algorithm for Multiobjective 0/1 Knapsack Problems , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[63]  Evan J. Hughes,et al.  MSOPS-II: A general-purpose Many-Objective optimiser , 2007, 2007 IEEE Congress on Evolutionary Computation.

[64]  Carlos A. Coello Coello,et al.  A Micro-Genetic Algorithm for Multiobjective Optimization , 2001, EMO.

[65]  Osman Turan,et al.  Application of a new multi-agent Hybrid Co-evolution based Particle Swarm Optimisation methodology in ship design , 2010, Comput. Aided Des..

[66]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[67]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[68]  John Yearwood,et al.  On the Limitations of Scalarisation for Multi-objective Reinforcement Learning of Pareto Fronts , 2008, Australasian Conference on Artificial Intelligence.

[69]  Carlos A. Coello Coello,et al.  Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[70]  Mehrdad Tamiz,et al.  Multi-objective meta-heuristics: An overview of the current state-of-the-art , 2002, Eur. J. Oper. Res..

[71]  Kalyanmoy Deb,et al.  A Hybrid Framework for Evolutionary Multi-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[72]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[73]  B. K. Mohanty,et al.  A preference structure on aspiration levels in a goal programming problem—a fuzzy approach , 1988 .

[74]  Mohamed A. Khamis,et al.  Adaptive multi-objective reinforcement learning with hybrid exploration for traffic signal control based on cooperative multi-agent framework , 2014, Eng. Appl. Artif. Intell..

[75]  Khaled Ghédira,et al.  The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making , 2010, IEEE Transactions on Evolutionary Computation.

[76]  Hisao Ishibuchi,et al.  Optimization of Scalarizing Functions Through Evolutionary Multiobjective Optimization , 2007, EMO.

[77]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[78]  Rubén Saborido,et al.  A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm , 2015, J. Glob. Optim..

[79]  Evan Dekker,et al.  Empirical evaluation methods for multiobjective reinforcement learning algorithms , 2011, Machine Learning.

[80]  Bo Liu,et al.  Proximal Reinforcement Learning: A New Theory of Sequential Decision Making in Primal-Dual Spaces , 2014, ArXiv.

[81]  Xin Yao,et al.  Performance Scaling of Multi-objective Evolutionary Algorithms , 2003, EMO.

[82]  Carlos A. Coello Coello,et al.  Including preferences into a multiobjective evolutionary algorithm to deal with many-objective engineering optimization problems , 2014, Inf. Sci..

[83]  Hisao Ishibuchi,et al.  Behavior of Multiobjective Evolutionary Algorithms on Many-Objective Knapsack Problems , 2015, IEEE Transactions on Evolutionary Computation.

[84]  W. Y. Ng,et al.  Generalized computer-aided design system: a multiobjective approach , 1991, Comput. Aided Des..

[85]  Rolf Drechsler,et al.  Robust Multi-Objective Optimization in High Dimensional Spaces , 2007, EMO.

[86]  Qingfu Zhang,et al.  Interactive MOEA/D for multi-objective decision making , 2011, GECCO '11.

[87]  Kalyanmoy Deb,et al.  Non-linear Dimensionality Reduction Procedures for Certain Large-Dimensional Multi-objective Optimization Problems: Employing Correntropy and a Novel Maximum Variance Unfolding , 2007, EMO.

[88]  David W. Corne,et al.  Techniques for highly multiobjective optimisation: some nondominated points are better than others , 2007, GECCO '07.

[89]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[90]  Yun Li,et al.  Optimization and robustness for crashworthiness of side impact , 2001 .

[91]  Jeffrey Horn,et al.  Multi-objective optimal design of groundwater remediation systems: application of the niched Pareto genetic algorithm (NPGA) , 2002 .

[92]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[93]  Markus Krosche,et al.  Multi-Objective Optimization with Application to Model Validation and Uncertainty Quantification , 2007 .

[94]  Akira Oyama,et al.  Data Mining of Pareto-Optimal Transonic Airfoil Shapes Using Proper Orthogonal Decomposition , 2010 .

[95]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO '06.

[96]  E. Hughes Multiple single objective Pareto sampling , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[97]  Ibrahim A. Baky Solving multi-level multi-objective linear programming problems through fuzzy goal programming approach , 2010 .

[98]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[99]  Eckart Zitzler,et al.  Are All Objectives Necessary? On Dimensionality Reduction in Evolutionary Multiobjective Optimization , 2006, PPSN.

[100]  Eckart Zitzler,et al.  Objective Reduction in Evolutionary Multiobjective Optimization: Theory and Applications , 2009, Evolutionary Computation.

[101]  Bo Liu,et al.  Basis Construction from Power Series Expansions of Value Functions , 2010, NIPS.

[102]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[103]  Ilsik Jang,et al.  Optimal Well Placement Based on Artificial Neural Network Incorporating the Productivity Potential , 2011 .

[104]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[105]  Qingfu Zhang,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 RM-MEDA: A Regularity Model-Based Multiobjective Estimation of , 2022 .

[106]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[107]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[108]  Yash P. Gupta,et al.  A simplified predictive control approach for handling constraints through linear programming , 1993 .

[109]  Eun-Soo Kim,et al.  Preference-Based Solution Selection Algorithm for Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[110]  Akhil Datta-Gupta,et al.  Handling Conflicting Multiple Objectives Using Pareto-Based Evolutionary Algorithm for History Matching of Reservoir Performance , 2013, ANSS 2013.

[111]  Patrick M. Reed,et al.  Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework , 2013, Evolutionary Computation.

[112]  H. Abbass,et al.  PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[113]  H. Kita,et al.  Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal? , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[114]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[115]  Michael Andrew Christie,et al.  History Matching and Uncertainty Quantification: Multiobjective Particle Swarm Optimisation Approach , 2011 .

[116]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[117]  Evan J. Hughes,et al.  Evolutionary many-objective optimisation: many once or one many? , 2005, 2005 IEEE Congress on Evolutionary Computation.

[118]  Edward L. Hannan,et al.  Nondominance In Goal Programming , 1980 .

[119]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[120]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach , 2014, IEEE Transactions on Evolutionary Computation.