An out-of-core sparse symmetric-indefinite factorization method

We present a new out-of-core sparse symmetric-indefinite factorization algorithm. The most significant innovation of the new algorithm is a dynamic partitioning method for the sparse factor. This partitioning method results in very low I/O traffic and allows the algorithm to run at high computational rates, even though the factor is stored on a slow disk. Our implementation of the new code compares well with both high-performance in-core sparse symmetric-indefinite codes and a high-performance out-of-core sparse Cholesky code.

[1]  Bruce M. Irons,et al.  A frontal solution program for finite element analysis , 1970 .

[2]  J. Bunch,et al.  Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .

[3]  J. Bunch,et al.  Decomposition of a symmetric matrix , 1976 .

[4]  Iain S. Duff,et al.  MA27 -- A set of Fortran subroutines for solving sparse symmetric sets of linear equations , 1982 .

[5]  Robert Schreiber,et al.  A New Implementation of Sparse Gaussian Elimination , 1982, TOMS.

[6]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[7]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[8]  Joseph W. H. Liu The role of elimination trees in sparse factorization , 1990 .

[9]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[10]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[11]  Barry W. Peyton,et al.  Block sparse Cholesky algorithms on advanced uniprocessor computers , 1991 .

[12]  Anoop Gupta,et al.  Efficient sparse matrix factorization on high performance workstations—exploiting the memory hierarchy , 1991, TOMS.

[13]  Joseph W. H. Liu,et al.  The Multifrontal Method for Sparse Matrix Solution: Theory and Practice , 1992, SIAM Rev..

[14]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[15]  John G. Lewis,et al.  Accurate Symmetric Indefinite Linear Equation Solvers , 1999, SIAM J. Matrix Anal. Appl..

[16]  Roded Sharan,et al.  A polynomial approximation algorithm for the minimum fill-in problem , 1998, STOC '98.

[17]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[18]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[19]  Cleve Ashcraft,et al.  SPOOLES: An Object-Oriented Sparse Matrix Library , 1999, PPSC.

[20]  Sivan Toledo,et al.  High-Performance Out-of-Core Sparse LU Factorization , 1999, PPSC.

[21]  Robert Schreiber,et al.  Efficient Methods for Out-of-Core Sparse Cholesky Factorization , 1999, SIAM J. Sci. Comput..

[22]  Jennifer A. Scott,et al.  A frontal code for the solution of sparse positive-definite symmetric systems arising from finite-element applications , 1999, TOMS.

[23]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[24]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[25]  Patrick R. Amestoy,et al.  MUltifrontal Massively Parallel Solver (MUMPS Version 4.3) Users' guide , 2003 .

[26]  Nicholas I. M. Gould,et al.  A numerical evaluation of HSL packages for the direct solution of large sparse, symmetric linear systems of equations , 2004, TOMS.

[27]  Florin Dobrian,et al.  Oblio: Design and Performance , 2004, PARA.

[28]  Sivan Toledo,et al.  The design and implementation of a new out-of-core sparse cholesky factorization method , 2004, TOMS.

[29]  Olaf Schenk,et al.  Maximum-Weighted Matching Strategies and the Application to Symmetric Indefinite Systems , 2004, PARA.

[30]  O. Schenk,et al.  ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .

[31]  Masha Sosonkina,et al.  Applied Parallel Computing. State of the Art in Scientific Computing , 2007 .