Beam cleaning of an incoherent laser via plasma Raman amplification

We show that backward Raman amplification in plasma can efficiently compress a temporally incoherent pump laser into an intense coherent amplified seed pulse, provided that the correlation time of the pump is longer than the inverse plasma frequency. An analytical theory for Raman amplification using pump beams with different correlation functions is developed and compared to numerical calculations and particle-in-cell simulations. Since incoherence on scales shorter than the instability growth time suppresses spontaneous noise amplification, we point out a broad regime where quasi-coherent sources may be used as efficient low-noise Raman amplification pumps. As the amplified seed is coherent, Raman amplification additionally provides a beam-cleaning mechanism for removing incoherence. At near-infrared wavelengths, finite coherence times as short as 50 fs allow amplification with only minor losses in efficiency.

[1]  Melvin Lax,et al.  FORMAL THEORY OF QUANTUM FLUCTUATIONS FROM A DRIVEN STATE , 1963 .

[2]  W. Kruer,et al.  Instability-generated laser reflection in plasmas , 1973 .

[3]  J. J. Thomson Finite-bandwidth effects on the parametric instability in an inhomogeneous plasma , 1975 .

[4]  E. L. Lindman,et al.  Plasma simulation studies of stimulated scattering processes in laser‐irradiated plasmas , 1975 .

[5]  A plasma-laser amplifier in the 11-16μm wavelength range , 1977 .

[6]  M. Rosen,et al.  Estimates of intensity, wavelength, and bandwidth scaling of Brillouin backscatter , 1981 .

[7]  S. P. Obenschain,et al.  Use of induced spatial incoherence for uniform illumination on laser fusion targets. Memorandum report , 1983 .

[8]  Kunioki Mima,et al.  Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression , 1984 .

[9]  Nicholas Djeu,et al.  Raman beam cleanup of a severely aberrated pump laser , 1985 .

[10]  H. Komine,et al.  Beam cleanup and low-distortion amplification in efficient high-gain hydrogen Raman amplifiers , 1986 .

[11]  G. Bonnaud,et al.  Particle code study of the influence of non-monochromaticity of laser light on stimulated Raman scattering in laser-irradiated plasmas , 1986 .

[12]  A. N. Sutyagin,et al.  CONTROL OF LASER RADIATION PARAMETERS: Feasibility of optical pulse compression by stimulated Brillouin scattering in a plasma , 1989 .

[13]  Audrius Dubietis,et al.  Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal , 1992 .

[14]  Alexander Pukhov,et al.  Superradiant Amplification of an Ultrashort Laser Pulse in a Plasma by a Counterpropagating Pump , 1998 .

[15]  Gennady Shvets,et al.  FAST COMPRESSION OF LASER BEAMS TO HIGHLY OVERCRITICAL POWERS , 1999 .

[16]  Gennady Shvets,et al.  Ultra-powerful compact amplifiers for short laser pulses , 2000 .

[17]  N. Fisch,et al.  Robustness of laser phase fronts in backward Raman amplifiers , 2002 .

[18]  N. Fisch,et al.  Random density inhomogeneities and focusability of the output pulses for plasma-based powerful backward Raman amplifiers , 2003 .

[19]  N. Fisch,et al.  Noise Suppression and Enhanced Focusability in Plasma Raman Amplifier with Multi-frequency Pump , 2003 .

[20]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[21]  Szymon Suckewer,et al.  Amplification of ultrashort laser pulses by a resonant Raman scheme in a gas-jet plasma. , 2004, Physical review letters.

[22]  S. Suckewer,et al.  Reaching nonlinear regime in Raman amplification of ultrashort laser pulses , 2005, 2005 Quantum Electronics and Laser Science Conference.

[23]  Vladimir T. Tikhonchuk,et al.  Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime , 2006 .

[24]  N. Fisch,et al.  Relic crystal-lattice effects on Raman compression of powerful x-ray pulses in plasmas. , 2007, Physical review letters.

[25]  N. Fisch,et al.  Compression of powerful x-ray pulses to attosecond durations by stimulated Raman backscattering in plasmas. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Szymon Suckewer,et al.  A compact double-pass Raman backscattering amplifier/compressora) , 2007 .

[27]  R. Bingham,et al.  White-light parametric instabilities in plasmas. , 2006, Physical review letters.

[28]  Szymon Suckewer,et al.  Demonstration of detuning and wavebreaking effects on Raman amplification efficiency in plasma , 2008 .

[29]  Scott C. Wilks,et al.  Development of a nanosecond-laser-pumped Raman amplifier for short laser pulses in plasma , 2009 .

[30]  N. Fisch,et al.  Quasitransient regimes of backward Raman amplification of intense x-ray pulses. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  K. Bowers,et al.  Observation of amplification of light by Langmuir waves and its saturation on the electron kinetic timescale , 2010 .

[32]  Raman beam cleanup in silicon in the mid-infrared. , 2010, Optics express.

[33]  H. Sinn,et al.  Coherence properties of the European XFEL , 2010 .

[34]  N. Fisch,et al.  Quasitransient backward Raman amplification of powerful laser pulses in dense plasmas with multicharged ions , 2010 .

[35]  P Audebert,et al.  Experimental evidence of short light pulse amplification using strong-coupling stimulated brillouin scattering in the pump depletion regime. , 2010, Physical review letters.

[36]  R Bingham,et al.  Production of picosecond, kilojoule, and petawatt laser pulses via Raman amplification of nanosecond pulses. , 2011, Physical review letters.

[37]  K A Nugent,et al.  Coherence properties of individual femtosecond pulses of an x-ray free-electron laser. , 2011, Physical review letters.

[38]  Chirped pulse Raman amplification in plasma , 2011 .

[39]  T Salditt,et al.  Spatial and temporal coherence properties of single free-electron laser pulses. , 2012, Optics express.

[40]  N. Fisch,et al.  Seed laser chirping for enhanced backward Raman amplification in plasmas. , 2012, Physical review letters.

[41]  D. Turnbull,et al.  Possible origins of a time-resolved frequency shift in Raman plasma amplifiers , 2012 .

[42]  G. Lehmann,et al.  Regions for Brillouin seed pulse growth in relativistic laser-plasma interaction , 2012 .

[43]  N. Fisch,et al.  Geometrical constraints on plasma couplers for Raman compression , 2012 .

[44]  Gerard Mourou,et al.  Exawatt-Zettawatt pulse generation and applications , 2012 .

[45]  Amplification of ultrashort laser pulses by brillouin backscattering in plasmas. , 2013, Physical review letters.

[46]  Spectral characteristics of ultra-short laser pulses in plasma amplifiers , 2013 .

[47]  Effect of collisions on amplification of laser beams by Brillouin scattering in plasmas , 2013 .

[48]  G. Lehmann,et al.  Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime , 2013 .

[49]  N. Fisch,et al.  Backward Raman amplification in the Langmuir wavebreaking regime , 2014, 1409.5118.

[50]  G. Lehmann,et al.  Non-filamentated ultra-intense and ultra-short pulse fronts in three-dimensional Raman seed amplification , 2014 .

[51]  R. Trines,et al.  Demonstration of laser pulse amplification by stimulated Brillouin scattering , 2014, High Power Laser Science and Engineering.

[52]  S. Depierreux,et al.  Laser light triggers increased Raman amplification in the regime of nonlinear Landau damping , 2014, Nature Communications.

[53]  Colin N. Danson,et al.  Petawatt class lasers worldwide , 2015, High Power Laser Science and Engineering.

[54]  R. G. Evans,et al.  Contemporary particle-in-cell approach to laser-plasma modelling , 2015 .

[55]  N. Fisch,et al.  The efficiency of Raman amplification in the wavebreaking regime , 2015 .

[56]  R. Trines,et al.  Compression of X-ray Free Electron Laser Pulses to Attosecond Duration , 2015, Scientific Reports.

[57]  G. Lehmann,et al.  Dynamical transition between weak and strong coupling in Brillouin laser pulse amplification , 2016 .

[58]  G. Lehmann,et al.  Temperature dependence of seed pulse amplitude and density grating in Brillouin amplification , 2016 .

[59]  N. Fisch,et al.  Short-pulse amplification by strongly coupled stimulated Brillouin scattering , 2016, 1607.00332.

[60]  Signatures of the Self-Similar Regime of Strongly Coupled Stimulated Brillouin Scattering for Efficient Short Laser Pulse Amplification. , 2016, Physical review letters.

[61]  Role of Frequency Chirp and Energy Flow Directionality in the Strong Coupling Regime of Brillouin-Based Plasma Amplification. , 2016, Physical review letters.

[62]  N. Fisch,et al.  Distinguishing Raman from strongly coupled Brillouin amplification for short pulses , 2016 .

[63]  Reducing parametric backscattering by polarization rotation , 2016, 1606.08489.

[64]  Strongly Enhanced Stimulated Brillouin Backscattering in an Electron-Positron Plasma. , 2015, Physical review letters.

[65]  V. Malkin,et al.  Extended Propagation of Powerful Laser Pulses in Focusing Kerr Media. , 2016, Physical review letters.

[66]  Zheng-Ming Sheng,et al.  Stimulated Raman scattering excited by incoherent light in plasma , 2017 .

[67]  A Subiel,et al.  An ultra-high gain and efficient amplifier based on Raman amplification in plasma , 2017, Scientific Reports.

[68]  N. Fisch,et al.  Laser-pulse compression using magnetized plasmas. , 2016, Physical review. E.

[69]  N. Fisch,et al.  X-ray amplification by stimulated Brillouin scattering. , 2017, Physical review. E.

[70]  K. Qu,et al.  Plasma Wave Seed for Raman Amplifiers. , 2016, Physical review letters.