Monte carlo study of the interacting self-avoiding walk model in three dimensions

We consider self-avoiding walks on the simple cubic lattice in which neighboring pairs of vertices of the walk (not connected by an edge) have an associated pair-wise additive energy. If the associated force is attractive, then the walk can collapse from a coil to a compact ball. We describe two Monte Carlo algorithms which we used to investigate this collapse process, and the properties of the walk as a function of the energy or temperature. We report results about the thermodynamic and configurational properties of the walks and estimate the location of the collapse transition.

[1]  F. Yates,et al.  Sampling Methods for Censuses and Surveys , 1950, The Mathematical Gazette.

[2]  W. Edwards Deming Some theory of sampling , 1951 .

[3]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[4]  Frank L. McCrackin,et al.  Monte Carlo Studies of Configurational and Thermodynamic Properties of Self‐Interacting Linear Polymer Chains , 1968 .

[5]  M. Lal,et al.  ‘Monte Carlo’ computer simulation of chain molecules , 1969 .

[6]  Marcel Janssens,et al.  Internal transition in an infinitely long polymer chain , 1975 .

[7]  P. G. de Gennes,et al.  Collapse of a polymer chain in poor solvents , 1975 .

[8]  D. C. Rapaport,et al.  Configurational properties of polymers in a good solvent , 1976 .

[9]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[10]  P. G. de Gennes,et al.  Collapse of a flexible polymer chain II , 1978 .

[11]  Toyoichi Tanaka,et al.  The coil–globule transition: Radius of gyration of polystyrene in cyclohexane , 1980 .

[12]  I. Webman,et al.  A Monte Carlo study of the collapse of a polymer chain , 1981 .

[13]  Kurt Kremer,et al.  Collapse transition and crossover scaling for self-avoiding walks on the diamond lattice , 1982 .

[14]  Karl F. Freed,et al.  Theta point (‘‘tricritical’’) region behavior for a polymer chain: Transition to collapse , 1984 .

[15]  Bernard Nienhuis,et al.  Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas , 1984 .

[16]  Hubert Saleur,et al.  Collapse of two-dimensional linear polymers , 1986 .

[17]  B. Duplantier,et al.  Tricritical Polymer Chains in or below Three Dimensions , 1986 .

[18]  Douglas A. Kurtze,et al.  Partition function zeros in two-dimensional lattice models of the polymer +θ-point , 1986 .

[19]  Vladimir Privman,et al.  Study of the θ point by enumeration of self-avoiding walks on the triangular lattice , 1986 .

[20]  Alan D. Sokal,et al.  Nonergodicity of local, length-conserving Monte Carlo algorithms for the self-avoiding walk , 1987 .

[21]  Stanley,et al.  Conformation of a polymer chain at the theta' point: Connection to the external perimeter of a percolation cluster. , 1987, Physical review. B, Condensed matter.

[22]  A. Sokal,et al.  The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk , 1988 .

[23]  Attilio L. Stella,et al.  Real space renormalization group approach to the theta point of a linear polymer in 2 and 3 dimensions , 1989 .

[24]  Viscosity study of the collapse state of a polystyrene , 1990 .

[25]  Hagai Meirovitch,et al.  Computer simulation study of the θ‐point in three dimensions. I. Self‐avoiding walks on a simple cubic lattice , 1990 .

[26]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[27]  Universal scaling parameter in the coil-to-globule transition , 1992 .

[28]  J. P. Valleau,et al.  Density‐scaling Monte Carlo study of subcritical Lennard‐Jonesium , 1993 .

[29]  Alan D. Sokal,et al.  Critical exponents, hyperscaling, and universal amplitude ratios for two- and three-dimensional self-avoiding walks , 1994 .

[30]  Sokal,et al.  A general limitation on Monte Carlo algorithms of the Metropolis type. , 1994, Physical review letters.