A multiscale MD-FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure.

[1]  Mauro Ferrari,et al.  Hierarchical modeling of diffusive transport through nanochannels by coupling molecular dynamics with finite element method , 2011, J. Comput. Phys..

[2]  Grégoire Allaire,et al.  Homogenization and concentration for a diffusion equation with large convection in a bounded domain , 2012 .

[3]  Z. She,et al.  Synthetic turbulence constructed by spatially randomized fractal interpolation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[5]  Rebecca J Shipley,et al.  Multiscale Modeling of Fluid Transport in Tumors , 2008, Bulletin of mathematical biology.

[6]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[7]  M.G.B. Drew,et al.  The art of molecular dynamics simulation , 1996 .

[8]  Jee E Rim,et al.  Using the method of homogenization to calculate the effective diffusivity of the stratum corneum with permeable corneocytes. , 2008, Journal of biomechanics.

[9]  Pranay Goel,et al.  Modelling calcium microdomains using homogenisation. , 2007, Journal of theoretical biology.

[10]  Han Gardeniers,et al.  Micro- and nanofluidic devices for environmental and biomedical applications , 2004 .

[11]  B. Chait,et al.  Determining the architectures of macromolecular assemblies , 2007, Nature.

[12]  U. Hornung Homogenization and porous media , 1996 .

[13]  A Grattoni,et al.  Confinement effects on monosaccharide transport in nanochannels. , 2010, The journal of physical chemistry. B.

[14]  Robert H. Austin,et al.  Fabrication of 10 nm enclosed nanofluidic channels , 2002 .

[15]  J. Tinsley Oden,et al.  Simplified methods and a posteriori error estimation for the homogenization of representative volume elements (RVE) , 1999 .

[16]  C. Nicholson,et al.  Changes in brain cell shape create residual extracellular space volume and explain tortuosity behavior during osmotic challenge. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Ferrari,et al.  Composite homogenization via the equivalent poly-inclusion approach , 1994 .

[18]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[19]  Claude Boutin,et al.  Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  G A Griess,et al.  The relationship of agarose gel structure to the sieving of spheres during agarose gel electrophoresis. , 1993, Biophysical journal.

[21]  Shiwei Zhou,et al.  Microstructure design of biodegradable scaffold and its effect on tissue regeneration. , 2011, Biomaterials.

[22]  Gabriel Wittum,et al.  Effective diffusivity in membranes with tetrakaidekahedral cells and implications for the permeabili , 2011 .

[23]  Mauro Ferrari,et al.  Molecular modeling of glucose diffusivity in silica nanochannels. , 2009, Journal of nanoscience and nanotechnology.

[24]  M. Ferrari,et al.  Nanopore Technology for Biomedical Applications , 1999 .

[25]  Malcolm Dole,et al.  Diffusion in Supersaturated Solutions. II. Glucose Solutions , 1953 .

[26]  Eduard Rohan,et al.  Modeling Large-deformation-induced Microflow in Soft Biological Tissues , 2006 .

[27]  Anna K. Marciniak-Czochra,et al.  Derivation of a Macroscopic Receptor-Based Model Using Homogenization Techniques , 2008, SIAM J. Math. Anal..

[28]  P. Grathwohl,et al.  Tracer diffusion coefficients in sedimentary rocks: correlation to porosity and hydraulic conductivity. , 2001, Journal of contaminant hydrology.

[29]  A Ziemys,et al.  Interfacial effects on nanoconfined diffusive mass transport regimes. , 2012, Physical review letters.

[30]  Karin Hofstetter,et al.  Prediction of transport properties of wood below the fiber saturation point – A multiscale homogenization approach and its experimental validation. Part II: Steady state moisture diffusion coefficient , 2011 .

[31]  Hua Zhang,et al.  Second-order modeling of arsenite transport in soils. , 2011, Journal of contaminant hydrology.

[32]  Mauro Ferrari,et al.  A robust nanofluidic membrane with tunable zero-order release for implantable dose specific drug delivery. , 2010, Lab on a chip.

[33]  N. Kojic,et al.  Computer Modeling in Bioengineering: Theoretical Background, Examples and Software , 2008 .

[34]  Karin Hofstetter,et al.  Prediction of transport properties of wood below the fiber saturation point – A multiscale homogenization approach and its experimental validation: Part I: Thermal conductivity , 2011 .

[35]  Jean-Louis Auriault,et al.  Effective Diffusion Coefficient: From Homogenization to Experiment , 1997 .

[36]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[37]  J. A. Sanz-Herrera,et al.  A mathematical model for bone tissue regeneration inside a specific type of scaffold , 2008, Biomechanics and modeling in mechanobiology.

[38]  K. Schulten,et al.  Water-silica force field for simulating nanodevices. , 2006, The journal of physical chemistry. B.

[39]  E. Flekkøy,et al.  Coupled air/granular flow in a linear Hele-Shaw cell. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  J. Sneyd,et al.  A mathematical analysis of obstructed diffusion within skeletal muscle. , 2009, Biophysical journal.

[41]  Pavel Kraikivski,et al.  Diffusion in cytoplasm: effects of excluded volume due to internal membranes and cytoskeletal structures. , 2009, Biophysical journal.

[42]  Ashok Shantilal Sangani An application of an homogenization method to a model of diffusion in glassy polymers , 1986 .

[43]  K. Bathe Finite Element Procedures , 1995 .

[44]  Zvi Hashin,et al.  Assessment of the Self Consistent Scheme Approximation: Conductivity of Particulate Composites , 1968 .