Integrative genome analysis of somatic p53 mutant osteosarcomas identifies Ets2-dependent regulation of small nucleolar RNAs by mutant p53 protein

Pourebrahim et al. developed a traceable somatic osteosarcoma mouse model that is initiated with either a single p53 mutation (p53R172H) or p53 loss in osteoblasts. They identified a cluster of Ets2-dependent small nucleolar RNAs (snoRNAs) that are highly up-regulated in p53 mutant tumors.

[1]  G. Lozano,et al.  Mutant p53 partners in crime , 2017, Cell Death and Differentiation.

[2]  Xuetao Cao,et al.  Tumor Exosomal RNAs Promote Lung Pre-metastatic Niche Formation by Activating Alveolar Epithelial TLR3 to Recruit Neutrophils. , 2016, Cancer cell.

[3]  Y. Haupt,et al.  Faculty Opinions recommendation of Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. , 2015 .

[4]  A. Børresen-Dale,et al.  Mutant p53 cooperates with the SWI/SNF chromatin remodeling complex to regulate VEGFR2 in breast cancer cells , 2015, Genes & development.

[5]  V. Rotter,et al.  Pla2g16 phospholipase mediates gain-of-function activities of mutant p53 , 2014, Proceedings of the National Academy of Sciences.

[6]  Y. Kunisaki,et al.  Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. , 2014, Developmental cell.

[7]  Karen H. Vousden,et al.  Mutant p53 in Cancer: New Functions and Therapeutic Opportunities , 2014, Cancer cell.

[8]  David M. Thomas,et al.  Genome-wide Association Study Identifies Two Susceptibility Loci for Osteosarcoma , 2013, Nature Genetics.

[9]  Thierry Soussi,et al.  The TP53 website: an integrative resource centre for the TP53 mutation database and TP53 mutant analysis , 2012, Nucleic Acids Res..

[10]  V. Rotter,et al.  Mutant p53R273H attenuates the expression of phase 2 detoxifying enzymes and promotes the survival of cells with high levels of reactive oxygen species , 2012, Journal of Cell Science.

[11]  V. Beneš,et al.  Df31 protein and snoRNAs maintain accessible higher-order structures of chromatin. , 2012, Molecular cell.

[12]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[13]  Roberta Galli,et al.  MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response , 2012, Proceedings of the National Academy of Sciences.

[14]  A. El‐Naggar,et al.  p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. , 2012, Cancer cell.

[15]  P. Brousset,et al.  Specific small nucleolar RNA expression profiles in acute leukemia , 2012, Leukemia.

[16]  I. Kubacka,et al.  Mutant p53 cooperates with ETS2 to promote etoposide resistance. , 2012, Genes & development.

[17]  T. Visakorpi,et al.  Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer , 2012, Oncogene.

[18]  A. Levine,et al.  Mutant p53 Disrupts Mammary Tissue Architecture via the Mevalonate Pathway , 2012, Cell.

[19]  F. Farzaneh,et al.  Are snoRNAs and snoRNA host genes new players in cancer? , 2012, Nature Reviews Cancer.

[20]  S. Hochreiter,et al.  cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate , 2012, Nucleic acids research.

[21]  J. Makarova,et al.  SNOntology: Myriads of novel snornas or just a mirage? , 2011, BMC Genomics.

[22]  M. Behlke,et al.  Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. , 2011, Cell metabolism.

[23]  R. Weinberg,et al.  A Perspective on Cancer Cell Metastasis , 2011, Science.

[24]  Julie A. Wilkins,et al.  p53 mutation and loss have different effects on tumourigenesis in a novel mouse model of pleomorphic rhabdomyosarcoma , 2010, The Journal of pathology.

[25]  V. Rotter,et al.  Mutant p53 gain-of-function in cancer. , 2010, Cold Spring Harbor perspectives in biology.

[26]  Paul Timpson,et al.  Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer , 2010, Proceedings of the National Academy of Sciences.

[27]  J. Norman,et al.  Mutant p53 Drives Invasion by Promoting Integrin Recycling , 2009, Cell.

[28]  Michael C. Ostrowski,et al.  Ets1 and Ets2 are required for endothelial cell survival during embryonic angiogenesis. , 2009, Blood.

[29]  Xiaohui Xie,et al.  MotifMap: a human genome-wide map of candidate regulatory motif sites , 2009, Bioinform..

[30]  M. Bouxsein,et al.  Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage , 2008, Proceedings of the National Academy of Sciences.

[31]  F. Alt,et al.  Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. , 2008, Genes & development.

[32]  P. Platzer,et al.  Breast-cancer stromal cells with TP53 mutations and nodal metastases. , 2007, The New England journal of medicine.

[33]  A. McMahon,et al.  Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors , 2006, Development.

[34]  A. Puisieux,et al.  Metastasis: a question of life or death , 2006, Nature Reviews Cancer.

[35]  Stephen N. Jones,et al.  Osteoblast differentiation and skeletal development are regulated by Mdm2–p53 signaling , 2006, The Journal of cell biology.

[36]  S. Stamm,et al.  The snoRNA HBII-52 Regulates Alternative Splicing of the Serotonin Receptor 2C , 2006, Science.

[37]  L. Strong,et al.  Gain of Function of a p53 Hot Spot Mutation in a Mouse Model of Li-Fraumeni Syndrome , 2004, Cell.

[38]  T. Jacks,et al.  Mutant p53 Gain of Function in Two Mouse Models of Li-Fraumeni Syndrome , 2004, Cell.

[39]  A. Berns,et al.  Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer , 2001, Nature Genetics.

[40]  C. Hauser,et al.  Altered Ets transcription factor activity in prostate tumor cells inhibits anchorage-independent growth, survival, and invasiveness , 2000, Oncogene.

[41]  A. Berns,et al.  Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. , 2000, Genes & development.

[42]  Tamás Kiss,et al.  Site-Specific Ribose Methylation of Preribosomal RNA: A Novel Function for Small Nucleolar RNAs , 1996, Cell.

[43]  J. Steitz,et al.  A mammalian gene with introns instead of exons generating stable RNA products , 1996, Nature.

[44]  A. Børresen-Dale,et al.  Mutant p 53 cooperates with the SWI / SNF chromatin remodeling complex to regulate VEGFR 2 in breast cancer cells , 2015 .

[45]  Jean Louis Fournier,et al.  The TP 53 website : an integrative resource centre for the TP 53 mutation database and TP 53 mutant analysis , 2012 .

[46]  Magali Olivier,et al.  TP53 mutations in human cancers: origins, consequences, and clinical use. , 2010, Cold Spring Harbor perspectives in biology.

[47]  M. Olivier,et al.  TP 53 Mutations in Human Cancers : Origins , Consequences , and Clinical Use , 2009 .

[48]  W. Winkelmann,et al.  Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.