Broadcast (and Round) Efficient Verifiable Secret Sharing

Verifiable secret sharing (VSS) is a fundamental cryptographic primitive, lying at the core of secure multi-party computation (MPC) and, as the distributed analogue of a commitment functionality, used in numerous applications. In this paper we focus on unconditionally secure VSS protocols with honest majority.

[1]  Moti Yung,et al.  Perfectly secure message transmission , 1993, JACM.

[2]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[3]  Jonathan Katz,et al.  Round-Efficient Secure Computation in Point-to-Point Networks , 2007, EUROCRYPT.

[4]  Yvo Desmedt,et al.  Perfectly Secure Message Transmission , 2011, Encyclopedia of Cryptography and Security.

[5]  Ivan Damgård,et al.  Efficient Multiparty Computations Secure Against an Adaptive Adversary , 1999, EUROCRYPT.

[6]  David Chaum,et al.  Multiparty unconditionally secure protocols , 1988, STOC '88.

[7]  Danny Dolev,et al.  Authenticated Algorithms for Byzantine Agreement , 1983, SIAM J. Comput..

[8]  Chiu Yuen Koo Studies on Fault-tolerant Broadcast and Secure Computation , 2007 .

[9]  Martin Hirt,et al.  Efficient Multi-party Computation with Dispute Control , 2006, TCC.

[10]  Tal Rabin,et al.  Robust sharing of secrets when the dealer is honest or cheating , 1994, JACM.

[11]  Silvio Micali,et al.  Optimal algorithms for Byzantine agreement , 1988, STOC '88.

[12]  Jonathan Katz,et al.  On expected constant-round protocols for Byzantine agreement , 2006, J. Comput. Syst. Sci..

[13]  Matthias Fitzi,et al.  Generalized communication and security models in Byzantine agreement , 2002 .

[14]  K. Srinathan,et al.  Round-Optimal and Efficient Verifiable Secret Sharing , 2006, TCC.

[15]  Yehuda Lindell,et al.  Secure Multi-Party Computation without Agreement , 2005, Journal of Cryptology.

[16]  Birgit Pfitzmann,et al.  Information-Theoretic Pseudosignatures and Byzantine Agreement for t ≥ n/3 , 2007 .

[17]  Matthias Fitzi,et al.  Optimally efficient multi-valued byzantine agreement , 2006, PODC '06.

[18]  Leslie Lamport,et al.  The Byzantine Generals Problem , 1982, TOPL.

[19]  Yuval Ishai,et al.  On 2-Round Secure Multiparty Computation , 2002, CRYPTO.

[20]  Danny Dolev,et al.  The Byzantine Generals Strike Again , 1981, J. Algorithms.

[21]  Baruch Awerbuch,et al.  Verifiable secret sharing and achieving simultaneity in the presence of faults , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[22]  Jonathan Katz,et al.  Improving the round complexity of VSS in point-to-point networks , 2008, Inf. Comput..

[23]  Matthias Fitzi,et al.  Detectable byzantine agreement secure against faulty majorities , 2002, PODC '02.

[24]  Avi Wigderson,et al.  Completeness theorems for non-cryptographic fault-tolerant distributed computation , 1988, STOC '88.

[25]  C. Pandu Rangan,et al.  The Round Complexity of Verifiable Secret Sharing Revisited , 2009, CRYPTO.

[26]  Tal Rabin,et al.  Verifiable secret sharing and multiparty protocols with honest majority , 1989, STOC '89.

[27]  Rafail Ostrovsky,et al.  Secure Message Transmission by Public Discussion: A Brief Survey , 2011, IWCC.

[28]  Matthias Fitzi,et al.  Unconditional Byzantine Agreement and Multi-party Computation Secure against Dishonest Minorities from Scratch , 2002, EUROCRYPT.

[29]  Martin Hirt,et al.  Efficient Byzantine Agreement with Faulty Minority , 2007, ASIACRYPT.

[30]  Martin Hirt,et al.  On the Complexity of Broadcast Setup , 2013, ICALP.

[31]  Rafail Ostrovsky,et al.  Near-Linear Unconditionally-Secure Multiparty Computation with a Dishonest Minority , 2012, CRYPTO.

[32]  Eli Upfal,et al.  Fault tolerance in networks of bounded degree , 1986, STOC '86.

[33]  Birgit Pfitzmann,et al.  Unconditional Byzantine Agreement with Good Majority , 1991, STACS.

[34]  C. Pandu Rangan,et al.  The Round Complexity of Verifiable Secret Sharing: The Statistical Case , 2010, ASIACRYPT.

[35]  Eli Upfal Tolerating linear number of faults in networks of bounded degree , 1992, PODC '92.

[36]  Eli Upfal,et al.  Fault Tolerance in Networks of Bounded Degree (Preliminary Version) , 1986, STOC 1986.

[37]  Rafail Ostrovsky,et al.  Almost-Everywhere Secure Computation , 2008, EUROCRYPT.