On the structure of the Wadge degrees of bqo-valued Borel functions
暂无分享,去创建一个
[1] Benedikt Löwe,et al. Wadge Degrees and Projective Ordinals: The Cabal Seminar, Volume II , 2011 .
[2] V. L. Selivanov. Hierearchies of hyperarithmetical sets and functions , 1983 .
[3] David Abend,et al. Recursive Aspects Of Descriptive Set Theory , 2016 .
[4] Richard Friedberg,et al. A criterion for completeness of degrees of unsolvability , 1957, Journal of Symbolic Logic.
[5] William W. Wadge,et al. Reducibility and Determinateness on the Baire Space , 1982 .
[6] Nick Bezhanishvili,et al. Operations on a Wadge-Type Hierarchy of Ordinal-Valued Functions , 2014 .
[7] Antonio Montalbán. Priority Arguments via True stages , 2014, J. Symb. Log..
[8] Victor L. Selivanov,et al. Towards a descriptive theory of cb0-spaces , 2014, Mathematical Structures in Computer Science.
[9] Robert van Wesep,et al. Wadge Degrees and Projective Ordinals: The Cabal Seminar, Volume II: Wadge degrees and descriptive set theory , 1978 .
[10] Arnold W. Miller,et al. Rigid Borel sets and better quasi-order theory , 1985 .
[11] C. Nash-Williams. On well-quasi-ordering infinite trees , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.
[12] Victor L. Selivanov. Extending Wadge Theory to k-Partitions , 2017, CiE.
[13] Victor L. Selivanov,et al. Fine hierarchies and Boolean terms , 1995, Journal of Symbolic Logic.
[14] Alberto Marcone,et al. The Veblen functions for computability theorists , 2009, The Journal of Symbolic Logic.
[15] Victor L. Selivanov,et al. Hierarchies of Δ02‐measurable k ‐partitions , 2007, Math. Log. Q..
[16] Victor L. Selivanov. A Fine Hierarchy of ω-Regular k-Partitions , 2011, CiE.
[17] Jacques Duparc,et al. The Steel hierarchy of ordinal valued Borel mappings , 2003, Journal of Symbolic Logic.
[18] John MacIntyre. Transfinite Extensions of Friedberg's Completeness Criterion , 1977, J. Symb. Log..
[19] Jacques Duparc,et al. Wadge hierarchy and Veblen hierarchy Part I: Borel sets of finite rank , 2001, Journal of Symbolic Logic.
[20] Alain Louveau,et al. On the Quasi-Ordering of Borel Linear Orders under Embeddability , 1990, J. Symb. Log..