On the structure of the Wadge degrees of bqo-valued Borel functions

In this article, we give a full description of the Wadge degrees of Borel functions from $\omega^\omega$ to a better quasi ordering $\mathcal{Q}$. More precisely, for any countable ordinal $\xi$, we show that the Wadge degrees of $\mathbf{\Delta}^0_{1+\xi}$-measurable functions $\omega^\omega\to\mathcal{Q}$ can be represented by countable joins of the $\xi$-th transfinite nests of $\mathcal{Q}$-labeled well-founded trees.

[1]  Benedikt Löwe,et al.  Wadge Degrees and Projective Ordinals: The Cabal Seminar, Volume II , 2011 .

[2]  V. L. Selivanov Hierearchies of hyperarithmetical sets and functions , 1983 .

[3]  David Abend,et al.  Recursive Aspects Of Descriptive Set Theory , 2016 .

[4]  Richard Friedberg,et al.  A criterion for completeness of degrees of unsolvability , 1957, Journal of Symbolic Logic.

[5]  William W. Wadge,et al.  Reducibility and Determinateness on the Baire Space , 1982 .

[6]  Nick Bezhanishvili,et al.  Operations on a Wadge-Type Hierarchy of Ordinal-Valued Functions , 2014 .

[7]  Antonio Montalbán Priority Arguments via True stages , 2014, J. Symb. Log..

[8]  Victor L. Selivanov,et al.  Towards a descriptive theory of cb0-spaces , 2014, Mathematical Structures in Computer Science.

[9]  Robert van Wesep,et al.  Wadge Degrees and Projective Ordinals: The Cabal Seminar, Volume II: Wadge degrees and descriptive set theory , 1978 .

[10]  Arnold W. Miller,et al.  Rigid Borel sets and better quasi-order theory , 1985 .

[11]  C. Nash-Williams On well-quasi-ordering infinite trees , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Victor L. Selivanov Extending Wadge Theory to k-Partitions , 2017, CiE.

[13]  Victor L. Selivanov,et al.  Fine hierarchies and Boolean terms , 1995, Journal of Symbolic Logic.

[14]  Alberto Marcone,et al.  The Veblen functions for computability theorists , 2009, The Journal of Symbolic Logic.

[15]  Victor L. Selivanov,et al.  Hierarchies of Δ02‐measurable k ‐partitions , 2007, Math. Log. Q..

[16]  Victor L. Selivanov A Fine Hierarchy of ω-Regular k-Partitions , 2011, CiE.

[17]  Jacques Duparc,et al.  The Steel hierarchy of ordinal valued Borel mappings , 2003, Journal of Symbolic Logic.

[18]  John MacIntyre Transfinite Extensions of Friedberg's Completeness Criterion , 1977, J. Symb. Log..

[19]  Jacques Duparc,et al.  Wadge hierarchy and Veblen hierarchy Part I: Borel sets of finite rank , 2001, Journal of Symbolic Logic.

[20]  Alain Louveau,et al.  On the Quasi-Ordering of Borel Linear Orders under Embeddability , 1990, J. Symb. Log..