Why do microorganisms produce rhamnolipids?

[1]  Alicja Szulc,et al.  Interactions between rhamnolipid biosurfactants and toxic chlorinated phenols enhance biodegradation of a model hydrocarbon-rich effluent , 2011 .

[2]  G. Zeng,et al.  Effect of monorhamnolipid on the degradation of n-hexadecane by Candida tropicalis and the association with cell surface properties , 2011, Applied Microbiology and Biotechnology.

[3]  Young Cheol Kim,et al.  Insecticidal activity of rhamnolipid isolated from pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). , 2011, Journal of agricultural and food chemistry.

[4]  E. Kaczorek,et al.  Differences and dynamic changes in the cell surface properties of three Pseudomonas aeruginosa strains isolated from petroleum-polluted soil as a response to various carbon sources and the external addition of rhamnolipids. , 2011, Bioresource technology.

[5]  E. Kaczorek,et al.  Isolation, preconcentration and determination of rhamnolipids in aqueous samples by dispersive liquid-liquid microextraction and liquid chromatography with tandem mass spectrometry. , 2011, Talanta.

[6]  L. Dendooven,et al.  Microbial communities to mitigate contamination of PAHs in soil—possibilities and challenges: a review , 2011, Environmental science and pollution research international.

[7]  Zhilong Wang Bioavailability of organic compounds solubilized in nonionic surfactant micelles , 2011, Applied Microbiology and Biotechnology.

[8]  C. Clément,et al.  Rhamnolipid Biosurfactants as New Players in Animal and Plant Defense against Microbes , 2010, International journal of molecular sciences.

[9]  Jian‐He Xu,et al.  Assessing bioavailability of the solubilization of organic compound in nonionic surfactant micelles by dose–response analysis , 2010, Applied Microbiology and Biotechnology.

[10]  F. Lépine,et al.  Rhamnolipids: diversity of structures, microbial origins and roles , 2010, Applied Microbiology and Biotechnology.

[11]  Julien Tremblay,et al.  Increase in Rhamnolipid Synthesis under Iron-Limiting Conditions Influences Surface Motility and Biofilm Formation in Pseudomonas aeruginosa , 2010, Journal of bacteriology.

[12]  Donald E Woods,et al.  Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids , 2009, BMC Microbiology.

[13]  G. Pier,et al.  Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes , 2009, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[14]  H. Heipieper,et al.  Rhamnolipid biosurfactants decrease the toxicity of chlorinated phenols to Pseudomonas putida DOT‐T1E , 2009, Letters in applied microbiology.

[15]  Alicja Szulc,et al.  Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity , 2009, Applied Microbiology and Biotechnology.

[16]  Mikołaj Owsianiak,et al.  Biodegradation of diesel fuel by a microbial consortium in the presence of 1-alkoxymethyl-2-methyl-5-hydroxypyridinium chloride homologues , 2009, Biodegradation.

[17]  R. Dean,et al.  Common processes in pathogenesis by fungal and oomycete plant pathogens, described with Gene Ontology terms , 2009, BMC Microbiology.

[18]  K. Myszka,et al.  Characterization of Adhesive Exopolysaccharide (EPS) Produced by Pseudomonas aeruginosa Under Starvation Conditions , 2009, Current Microbiology.

[19]  H. Heipieper,et al.  Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: effect of the type of blend and the addition of biosurfactants. , 2009, Bioresource technology.

[20]  R. Marchal,et al.  Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species , 1996, Applied Microbiology and Biotechnology.

[21]  Mikołaj Owsianiak,et al.  Adsorption of Sodium Dodecylbenzenesulphonate (SDBS) on Candida maltosa EH 15 Strain: Influence on Cell Surface Hydrophobicity and n-alkanes Biodegradation , 2009 .

[22]  E. Al-Saleh,et al.  Comparative hydrocarbon utilization by hydrophobic and hydrophilic variants of Pseudomonas aeruginosa , 2008, Journal of applied microbiology.

[23]  N. Verstraeten,et al.  Living on a surface: swarming and biofilm formation. , 2008, Trends in microbiology.

[24]  E. Kaczorek,et al.  Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants: rhamnolipides and saponins. , 2008, Bioresource technology.

[25]  C. Harwood,et al.  Identification of FleQ from Pseudomonas aeruginosa as a c‐di‐GMP‐responsive transcription factor , 2008, Molecular microbiology.

[26]  E. Kaczorek,et al.  Phenol and n-alkanes (C12 and C16) utilization: influence on yeast cell surface hydrophobicity , 2008 .

[27]  A. Wolfe,et al.  Get the Message Out: Cyclic-Di-GMP Regulates Multiple Levels of Flagellum-Based Motility , 2007, Journal of bacteriology.

[28]  W. Białas,et al.  Cell surface hydrophobicity of Bacillus spp. as a function of nutrient supply and lipopeptides biosynthesis and its role in adhesion. , 2008, Polish journal of microbiology.

[29]  W. Goddard,et al.  Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery , 2007, Biotechnology and bioengineering.

[30]  Julien Tremblay,et al.  Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. , 2007, Environmental microbiology.

[31]  D. Hassett,et al.  Pseudomonas aeruginosa AlgR Represses the Rhl Quorum-Sensing System in a Biofilm-Specific Manner , 2007, Journal of bacteriology.

[32]  K. Jaeger,et al.  The Autotransporter Esterase EstA of Pseudomonas aeruginosa Is Required for Rhamnolipid Production, Cell Motility, and Biofilm Formation , 2007, Journal of bacteriology.

[33]  G. O’Toole,et al.  SadC Reciprocally Influences Biofilm Formation and Swarming Motility via Modulation of Exopolysaccharide Production and Flagellar Function , 2007, Journal of bacteriology.

[34]  Frederick M. Ausubel,et al.  BifA, a Cyclic-Di-GMP Phosphodiesterase, Inversely Regulates Biofilm Formation and Swarming Motility by Pseudomonas aeruginosa PA14 , 2007, Journal of bacteriology.

[35]  K. Myszka,et al.  Cell surface properties as factors involved in Proteus vulgaris adhesion to stainless steel under starvation conditions , 2007 .

[36]  E. Al-Saleh,et al.  Insight into heterogeneity in cell-surface hydrophobicity and ability to degrade hydrocarbons among cells of two hydrocarbon-degrading bacterial populations. , 2007, Canadian journal of microbiology.

[37]  R. Proctor,et al.  Enhanced Post-Stationary-Phase Survival of a Clinical Thymidine-Dependent Small-Colony Variant of Staphylococcus aureus Results from Lack of a Functional Tricarboxylic Acid Cycle , 2007, Journal of bacteriology.

[38]  T. Tolker-Nielsen,et al.  Multiple Roles of Biosurfactants in Structural Biofilm Development by Pseudomonas aeruginosa , 2007, Journal of bacteriology.

[39]  U. Jenal,et al.  Mechanisms of cyclic-di-GMP signaling in bacteria. , 2006, Annual review of genetics.

[40]  S. Lory,et al.  Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[41]  E. Kaczorek,et al.  The Ability of Candida Maltosa for Hydrocarbon and Emulsified Hydrocarbon Degradation , 2006 .

[42]  G. O’Toole,et al.  Rhamnolipids Modulate Swarming Motility Patterns of Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[43]  D. Tifrea,et al.  A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  E. Kaczorek,et al.  Relation between Candida maltosa Hydrophobicity and Hydrocarbon Biodegradation , 2005 .

[45]  G. O’Toole,et al.  Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. , 2005, FEMS microbiology letters.

[46]  F. Lépine,et al.  Production of rhamnolipids by Pseudomonas aeruginosa , 2005, Applied Microbiology and Biotechnology.

[47]  Blaise R. Boles,et al.  Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms , 2005, Molecular microbiology.

[48]  J. Connolly,et al.  A Three-Component Regulatory System Regulates Biofilm Maturation and Type III Secretion in Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[49]  A. Spormann,et al.  Induction of Rapid Detachment in Shewanella oneidensis MR-1 Biofilms , 2005, Journal of bacteriology.

[50]  E. Greenberg,et al.  Timing and Localization of Rhamnolipid Synthesis Gene Expression in Pseudomonas aeruginosa Biofilms , 2005, Journal of bacteriology.

[51]  S. Lory,et al.  A novel two‐component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes , 2004, Molecular microbiology.

[52]  J. Trevors,et al.  Effect of addition ofPseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil , 1992, Journal of Industrial Microbiology.

[53]  J. Guinea,et al.  Kinetic studies on surfactant production byPseudomonas aeruginosa 44T1 , 1991, Journal of Industrial Microbiology.

[54]  J. Contiero,et al.  Rhamnolipid Surfactants: An Update on the General Aspects of These Remarkable Biomolecules , 2005, Biotechnology progress.

[55]  R. Prince The Microbiology of Marine Oil Spill Bioremediation , 2005 .

[56]  Hauke Harms,et al.  Principles of microbial PAH-degradation in soil. , 2005, Environmental pollution.

[57]  P. Stewart,et al.  Hypothesis for the Role of Nutrient Starvation in Biofilm Detachment , 2004, Applied and Environmental Microbiology.

[58]  Blaise R. Boles,et al.  Self-generated diversity produces "insurance effects" in biofilm communities. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[59]  S. Lory,et al.  A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. , 2004, Developmental cell.

[60]  R. Kolter,et al.  Two Genetic Loci Produce Distinct Carbohydrate-Rich Structural Components of the Pseudomonas aeruginosa Biofilm Matrix , 2004, Journal of bacteriology.

[61]  G. Pessi,et al.  Positive Control of Swarming, Rhamnolipid Synthesis, and Lipase Production by the Posttranscriptional RsmA/RsmZ System in Pseudomonas aeruginosa PAO1 , 2004, Journal of bacteriology.

[62]  D. Allison,et al.  A role for rhamnolipid in biofilm dispersion , 2004 .

[63]  M. Matsufuji,et al.  High production of rhamnolipids by Pseudomonas aeruginosagrowing on ethanol , 1997, Biotechnology Letters.

[64]  W. Rulkens,et al.  Microbiological aspects of surfactant use for biological soil remediation , 1997, Biodegradation.

[65]  O. Käppeli,et al.  Dependence of Pseudomonas aeruginosa continous culture biosurfactant production on nutritional and environmental factors , 1986, Applied Microbiology and Biotechnology.

[66]  A. Johnsen,et al.  Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons , 2004, Applied Microbiology and Biotechnology.

[67]  G. Soberón-Chávez Biosynthesis of Rhamnolipids , 2004 .

[68]  F. Wagner,et al.  Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor , 2004, Applied Microbiology and Biotechnology.

[69]  P. S. Meadows,et al.  The attachment of bacteria to solid surfaces , 2004, Archiv für Mikrobiologie.

[70]  M. Parsek,et al.  Bacterial biofilms: an emerging link to disease pathogenesis. , 2003, Annual review of microbiology.

[71]  R. Makkar,et al.  Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons , 2003, Environmental toxicology and chemistry.

[72]  S. Kjelleberg,et al.  Cell Death in Pseudomonas aeruginosa Biofilm Development , 2003, Journal of bacteriology.

[73]  F. Lépine,et al.  rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. , 2003, Microbiology.

[74]  M. Infante,et al.  Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. , 2003, Biotechnology and bioengineering.

[75]  G. O’Toole,et al.  Rhamnolipid Surfactant Production Affects Biofilm Architecture in Pseudomonas aeruginosa PAO1 , 2003, Journal of bacteriology.

[76]  M. Espinosa-Urgel Resident Parking Only: Rhamnolipids Maintain Fluid Channels in Biofilms , 2003, Journal of bacteriology.

[77]  Cory J. Rupp,et al.  Biofilm material properties as related to shear-induced deformation and detachment phenomena , 2002, Journal of Industrial Microbiology and Biotechnology.

[78]  D. Janssen,et al.  Rhamnolipid Stimulates Uptake of Hydrophobic Compounds by Pseudomonas aeruginosa , 2002, Applied and Environmental Microbiology.

[79]  A. Torres,et al.  The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells , 2002, Molecular microbiology.

[80]  J. Costerton,et al.  Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm , 2002, Journal of bacteriology.

[81]  P. Stewart,et al.  Mechanisms of antibiotic resistance in bacterial biofilms. , 2002, International journal of medical microbiology : IJMM.

[82]  S. Anand,et al.  Swarming: A coordinated bacterial activity , 2002 .

[83]  Hilary M. Lappin-Scott,et al.  Growth and Detachment of Cell Clusters from Mature Mixed-Species Biofilms , 2001, Applied and Environmental Microbiology.

[84]  Roger E. Bumgarner,et al.  Gene expression in Pseudomonas aeruginosa biofilms , 2001, Nature.

[85]  C. Olvera,et al.  Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di‐rhamnolipid biosynthesis , 2001, Molecular microbiology.

[86]  Y Comeau,et al.  Initiation of Biofilm Formation byPseudomonas aeruginosa 57RP Correlates with Emergence of Hyperpiliated and Highly Adherent Phenotypic Variants Deficient in Swimming, Swarming, and Twitching Motilities , 2001, Journal of bacteriology.

[87]  G. O’Toole,et al.  Microbial Biofilms: from Ecology to Molecular Genetics , 2000, Microbiology and Molecular Biology Reviews.

[88]  C. van Delden,et al.  Swarming of Pseudomonas aeruginosa Is Dependent on Cell-to-Cell Signaling and Requires Flagella and Pili , 2000, Journal of bacteriology.

[89]  R. Maier,et al.  Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications , 2000, Applied Microbiology and Biotechnology.

[90]  E. Greenberg,et al.  Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[91]  A. Bodour,et al.  Rhamnolipid-Induced Removal of Lipopolysaccharide from Pseudomonas aeruginosa: Effect on Cell Surface Properties and Interaction with Hydrophobic Substrates , 2000, Applied and Environmental Microbiology.

[92]  W. B. Betts,et al.  Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa , 2000, Journal of applied microbiology.

[93]  J. Ramos,et al.  Genetic Analysis of Functions Involved in Adhesion of Pseudomonas putida to Seeds , 2000, Journal of bacteriology.

[94]  R. Kolter,et al.  Biofilm formation as microbial development. , 2000, Annual review of microbiology.

[95]  J. Karns,et al.  High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by pseudomonas aeruginosa UG2 on corn oil. , 1999, Journal of chromatography. A.

[96]  P. Stewart,et al.  Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide , 1999, Molecular microbiology.

[97]  Stefan Wuertz,et al.  High Rates of Conjugation in Bacterial Biofilms as Determined by Quantitative In Situ Analysis , 1999, Applied and Environmental Microbiology.

[98]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[99]  R. Marchal,et al.  Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake , 1999, Journal of applied microbiology.

[100]  G. Fraser,et al.  Swarming motility. , 1999, Current opinion in microbiology.

[101]  S. Lang,et al.  Rhamnose lipids – biosynthesis, microbial production and application potential , 1999, Applied Microbiology and Biotechnology.

[102]  F. V. van Tiel,et al.  Colonization With Pseudomonas aeruginosa in Patients Developing Ventilator-Associated Pneumonia , 1998, Infection Control & Hospital Epidemiology.

[103]  D. Allison,et al.  Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. , 1998, FEMS microbiology letters.

[104]  R. Kolter,et al.  Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.

[105]  Ariño,et al.  Involvement of a rhamnolipid‐producing strain of Pseudomonas aeruginosa in the degradation of polycyclic aromatic hydrocarbons by a bacterial community , 1998, Journal of applied microbiology.

[106]  F. V. van Tiel,et al.  Colonization with Pseudomonas aeruginosa in patients developing ventilator-associated pneumonia. , 1998, Infection control and hospital epidemiology.

[107]  J. Shapiro Thinking about bacterial populations as multicellular organisms. , 1998, Annual review of microbiology.

[108]  H. Ohtake,et al.  Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. , 1997, Microbiology.

[109]  H. Hahn,et al.  The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa--a review. , 1997, Gene.

[110]  M. Bouchez,et al.  An interfacial uptake mechanism for the degradation of pyrene by a Rhodococcus strain. , 1997, Microbiology.

[111]  I. Banat,et al.  Microbial production of surfactants and their commercial potential , 1997, Microbiology and molecular biology reviews : MMBR.

[112]  F. Lépine,et al.  Biosurfactant production by a soil pseudomonas strain growing on polycyclic aromatic hydrocarbons , 1996, Applied and environmental microbiology.

[113]  T. Neu Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. , 1996, Microbiological reviews.

[114]  J. Reiser,et al.  Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[115]  R. Miller,et al.  Effect of Rhamnolipid (Biosurfactant) Structure on Solubilization and Biodegradation of n-Alkanes , 1995, Applied and environmental microbiology.

[116]  R. Turco,et al.  Surfactant-Enhanced Bioavailability of Slightly Soluble Organic Compounds , 1995 .

[117]  R. Miller,et al.  Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane , 1994, Applied and environmental microbiology.

[118]  W. Finnerty Biosurfactants in environmental biotechnology , 1994 .

[119]  A Fiechter,et al.  Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa , 1994, Journal of bacteriology.

[120]  A. Darzins Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus , 1994, Molecular microbiology.

[121]  R. Hommel Formation and function of biosurfactants for degradation of water-insoluble substrates , 1994 .

[122]  J. Mattick,et al.  PilS and PilR, a two‐component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa , 1993, Molecular microbiology.

[123]  R. Miller,et al.  Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant) , 1992, Applied and environmental microbiology.

[124]  David M. Falatko,et al.  Effects of biologically produced surfactants on the mobility and biodegradation of petroleum hydrocarbons , 1992 .

[125]  J. Reiser,et al.  Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants , 1991, Journal of bacteriology.

[126]  J. Mattick,et al.  Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. , 1991, Gene.

[127]  S. Adhya,et al.  Positive control. , 1990, The Journal of biological chemistry.

[128]  J. Parra,et al.  Studies of biosurfactants obtained from olive oil , 1990 .

[129]  C. Mulligan,et al.  The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa , 1989 .

[130]  C. Mulligan,et al.  Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa , 1989, Applied and environmental microbiology.

[131]  S. Lory,et al.  Formation of pilin in Pseudomonas aeruginosa requires the alternative sigma factor (RpoN) of RNA polymerase. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[132]  M. Humphries,et al.  The effect of a range of biological polymers and synthetic surfactants on the adhesion of a marine Pseudomonas sp. strain NCMB 2021 to hydrophilic and hydrophobic surfaces , 1986 .

[133]  A Fiechter,et al.  Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source , 1984, Applied and Environmental Microbiology.

[134]  M. Singer,et al.  Microbial metabolism of straight-chain and branched alkanes , 1984 .

[135]  C. Ratledge,et al.  physiology of hydrocarbon-utilizing microorganisms , 1984 .

[136]  M. Goldflam,et al.  Evidence for gene sharing in the nitrate reduction systems of Pseudomonas aeruginosa , 1983, Journal of bacteriology.

[137]  Koichi Yamada,et al.  Formation of Rhamnolipid by Pseudomonas aeruginosa and its Function in Hydrocarbon Fermentation , 1971 .

[138]  S. Wilkinson,et al.  Release of lipopolysaccharide during the preparation of cell walls of Pseudomonas aeruginosa. , 1967, Biochimica et biophysica acta.