Tertiary lymphoid structures improve immunotherapy and survival in melanoma

[1]  Qiaofei Liu,et al.  Circular RNA and tumor microenvironment , 2020, Cancer Cell International.

[2]  K. Messer,et al.  Neoadjuvant rituximab modulates the tumor immune environment in patients with high risk prostate cancer , 2020, Journal of Translational Medicine.

[3]  E. Jaffee,et al.  Effects of B cell-activating factor on tumor immunity. , 2020, JCI insight.

[4]  S. Markovic,et al.  Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy , 2020, Journal of experimental & clinical cancer research : CR.

[5]  C. Sautès-Fridman,et al.  The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies , 2020, Frontiers in Immunology.

[6]  J. Wargo,et al.  B cells are associated with survival and immunotherapy response in sarcoma , 2020, Nature.

[7]  Jeffrey E. Lee,et al.  B cells and tertiary lymphoid structures promote immunotherapy response , 2020, Nature.

[8]  C. Sautès-Fridman,et al.  Tertiary lymphoid structures in the era of cancer immunotherapy , 2019, Nature Reviews Cancer.

[9]  J. Madore,et al.  Distinct Immune Cell Populations Define Response to Anti-PD-1 Monotherapy and Anti-PD-1/Anti-CTLA-4 Combined Therapy. , 2019, Cancer cell.

[10]  Monika S. Kowalczyk,et al.  A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade , 2018, Cell.

[11]  Paul J. Hoover,et al.  Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma , 2018, Cell.

[12]  J. Lunceford,et al.  Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy , 2018, Science.

[13]  Merrick I Ross,et al.  Neoadjuvant Immune Checkpoint Blockade in High-Risk Resectable Melanoma , 2018, Nature Medicine.

[14]  E. Le Chatelier,et al.  Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients , 2018, Science.

[15]  S. Tangye,et al.  CCR6 Defines Memory B Cell Precursors in Mouse and Human Germinal Centers, Revealing Light‐Zone Location and Predominant Low Antigen Affinity , 2017, Immunity.

[16]  M. Ringnér,et al.  Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma , 2017, Nature Communications.

[17]  T. Chan,et al.  Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab , 2017, Cell.

[18]  L. Saal,et al.  NF1‐mutated melanoma tumors harbor distinct clinical and biological characteristics , 2017, Molecular oncology.

[19]  P. A. Futreal,et al.  Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance , 2017, Science Translational Medicine.

[20]  Suan Dan,et al.  マウスおよびヒトはい中心におけるCCR6は記憶B細胞前駆体,光帯を明らかにする位置と主要な低抗原親和性【Powered by NICT】 , 2017 .

[21]  P. Laurent-Puig,et al.  Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression , 2016, Genome Biology.

[22]  Jeffrey T Leek,et al.  Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown , 2016, Nature Protocols.

[23]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[24]  S. Gabriel,et al.  Genomic correlates of response to CTLA-4 blockade in metastatic melanoma , 2015, Science.

[25]  M. Mihm,et al.  Reflections on the Histopathology of Tumor-Infiltrating Lymphocytes in Melanoma and the Host Immune Response , 2015, Cancer Immunology Research.

[26]  J. Larkin,et al.  Pembrolizumab versus Ipilimumab in Advanced Melanoma. , 2015, The New England journal of medicine.

[27]  Steven J. M. Jones,et al.  Genomic Classification of Cutaneous Melanoma , 2015, Cell.

[28]  Pornpimol Charoentong,et al.  Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy , 2015, Genome Biology.

[29]  S. Gnjatic,et al.  Tertiary Lymphoid Structure-Associated B Cells are Key Players in Anti-Tumor Immunity , 2015, Front. Immunol..

[30]  U. Klein,et al.  Dynamics of B cells in germinal centres , 2015, Nature Reviews Immunology.

[31]  C. Sautès-Fridman,et al.  Tertiary lymphoid structures in cancer and beyond. , 2014, Trends in immunology.

[32]  Z. Trajanoski,et al.  Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. , 2013, Immunity.

[33]  Albert Kriegner,et al.  Monitoring of Technical Variation in Quantitative High-Throughput Datasets , 2013, Cancer informatics.

[34]  Alfonso Valencia,et al.  APPRIS: annotation of principal and alternative splice isoforms , 2012, Nucleic Acids Res..

[35]  V. Sondak,et al.  12-Chemokine Gene Signature Identifies Lymph Node-like Structures in Melanoma: Potential for Patient Selection for Immunotherapy? , 2012, Scientific Reports.

[36]  J. J. van den Oord,et al.  Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases. , 2012, Cancer research.

[37]  M. Ringnér,et al.  Molecular Profiling Reveals Low- and High-Grade Forms of Primary Melanoma , 2012, Clinical Cancer Research.

[38]  Jason Li,et al.  CONTRA: copy number analysis for targeted resequencing , 2012, Bioinform..

[39]  J. Tímár,et al.  Prognostic impact of B-cell density in cutaneous melanoma , 2011, Cancer Immunology, Immunotherapy.

[40]  Emmanuel Barillot,et al.  Analysis of array CGH data: from signal ratio to gain and loss of DNA regions , 2004, Bioinform..

[41]  K. Tarte,et al.  Gene expression profiling of plasma cells and plasmablasts: toward a better understanding of the late stages of B-cell differentiation. , 2003, Blood.

[42]  P. Rogers,et al.  OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. , 2001, Immunity.

[43]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.