Aspects of operational atmospheric correction of hyperspectral imagery

The large number of spectral bands of hyperspectral instruments and the time required for the calculation of atmospheric look-up tables and the reflectance image cube pose very challenging requirements on an operational processing facility. This contribution presents some aspects and suggestions to reduce the processing time. Essential components are a precalculated database with a reduced number of spectral bands, an interactive phase to determine the appropriate atmospheric parameters, and a choice between medium and high accuracy levels for the atmospheric correction. The medium accuracy levels work with look-up tables for a reduced number of spectral bands employing interpolation for the channels omitted in the look-up tables. The high accuracy level uses tables for all channels and includes the scan angle dependence of the atmospheric radiance and transmittance functions. These ideas were successfully implemented and tested during several airborne hyperspectral campaigns resulting in an estimated time saving of a factor 3-7. The deviations of field measured reflectance spectra and spectra retrieved from airborne HyMap imagery are in the range of 2-3% or better.

[1]  A. Goetz,et al.  Software for the derivation of scaled surface reflectances from AVIRIS data , 1992 .

[2]  Michael L. Eastwood,et al.  Calibration of the Airborne Visible/Infrared Imaging Spectrometer in the Laboratory , 1996 .

[3]  K. Staenz,et al.  A Decade of Imaging Spectrometry in Canada , 1992 .

[4]  A. Goetz,et al.  Cirrus cloud detection from airborne imaging spectrometer data using the 1 , 1993 .

[5]  S. Macenka,et al.  Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1988 .

[6]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[7]  Daniel Schläpfer,et al.  Atmospheric Precorrected Differential Absorption Technique to Retrieve Columnar Water Vapor , 1998 .

[8]  Jack L. Engle,et al.  The Thematic Mapper---An Overview , 1983, IEEE Transactions on Geoscience and Remote Sensing.

[9]  K. Staenz Imaging Spectrometer Data Analyzer (ISDA): A Software Package for Analyzing High Spectral Resolution Data , 1992 .

[10]  K. Kriebel,et al.  Measured spectral bidirectional reflection properties of four vegetated surfaces. , 1978, Applied optics.

[11]  J. Muller,et al.  Terrestrial remote sensing science and algorithms planned for EOS/MODIS , 1994 .

[12]  Y. Kaufman,et al.  Non-Lambertian Effects on Remote Sensing of Surface Reflectance and Vegetation Index , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Rudolf Richter Atmospheric correction of DAIS hyperspectral image data , 1996 .

[14]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[15]  D. Roberts,et al.  Comparison of various techniques for calibration of AIS data , 1986 .

[16]  F. Kruse Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California , 1988 .

[17]  Wallace M. Porter,et al.  The airborne visible/infrared imaging spectrometer (AVIRIS) , 1993 .

[18]  R. Richter A spatially adaptive fast atmospheric correction algorithm , 1996 .

[19]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[20]  M. S. Moran,et al.  Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output , 1992 .

[21]  Peter Strobl,et al.  Laboratory calibration and inflight validation of the Digital Airborne Imaging Spectrometer DAIS 7915 , 1997, Defense, Security, and Sensing.

[22]  A. Berk MODTRAN : A moderate resolution model for LOWTRAN7 , 1989 .

[23]  R. Richter,et al.  Correction of satellite imagery over mountainous terrain. , 1998, Applied optics.

[24]  Jack S. Margolis,et al.  Determination of the in-flight spectral and radiometric characteristics of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1991 .

[25]  D. C. Robertson,et al.  MODTRAN cloud and multiple scattering upgrades with application to AVIRIS , 1998 .

[26]  A. B. Lefkoff,et al.  Expert system-based mineral mapping in northern death valley, California/Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1993 .

[27]  K. Staenz,et al.  Retrieval of surface reflectance from hyperspectral Data using a look-up table approach , 1997 .

[28]  D. Kimes Dynamics of directional reflectance factor distributions for vegetation canopies. , 1983, Applied optics.

[29]  Kurtis J. Thome,et al.  Atmospheric correction of ASTER , 1998, IEEE Trans. Geosci. Remote. Sens..

[30]  Kriebel Kt,et al.  Measured spectral bidirectional reflection properties of four vegetated surfaces. , 1978 .

[31]  R. Jenssen,et al.  1 THE HYMAP TM AIRBORNE HYPERSPECTRAL SENSOR : THE SYSTEM , CALIBRATION AND PERFORMANCE , 1998 .

[32]  R. Richter Correction of atmospheric and topographic effects for high spatial resolution satellite imagery , 1997 .

[33]  Rudolf Richter,et al.  Correction of atmospheric and topographic effects for high-spatial-resolution satellite imagery , 1997, Defense, Security, and Sensing.

[34]  D. C. Robertson,et al.  MODTRAN: A Moderate Resolution Model for LOWTRAN , 1987 .