High-contrast, reversible thermal conductivity regulation utilizing the phase transition of polyethylene nanofibers.

Reversible thermal conductivity regulation at the nanoscale is of great interest to a wide range of applications such as thermal management, phononics, sensors, and energy devices. Through a series of large-scale molecular dynamics simulations, we demonstrate a thermal conductivity regulation utilizing the phase transition of polyethylene nanofibers, enabling a thermal conductivity tuning factor of as high as 12, exceeding all previously reported values. The thermal conductivity change roots from the segmental rotations along the polymer chains, which introduce along-chain morphology disorder that significantly interrupts phonon transport along the molecular chains. This phase transition, which can be regulated by temperature, strain, or their combinations, is found to be fully reversible in the polyethylene nanofibers and can happen at a narrow temperature window. The phase change temperature can be further tuned by engineering the diameters of the nanofibers, making such a thermal conductivity regulation scheme adaptable to different application needs. The findings can stimulate significant research interest in nanoscale heat transfer control.

[1]  J. Hoffman,et al.  X‐Ray Study of Isothermal Thickening of Lamellae in Bulk Polyethylene at the Crystallization Temperature , 1965 .

[2]  T. Luo,et al.  Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers , 2012 .

[3]  Jianjian Wang,et al.  Reversible temperature regulation of electrical and thermal conductivity using liquid–solid phase transitions , 2011, Nature communications.

[4]  A. Henry,et al.  Molecular dynamics simulation of thermal energy transport in polydimethylsiloxane , 2011 .

[5]  Ronggui Yang,et al.  Tuning the thermal conductivity of polymers with mechanical strains , 2010 .

[6]  A. Keller,et al.  Morphology of Synthetic Fibres; A Study on Drawn Polyethylene , 1964, Nature.

[7]  E. Rudnik,et al.  Thermal degradation of UHMWPE , 1997 .

[8]  A. Thompson,et al.  1D-to-3D transition of phonon heat conduction in polyethylene using molecular dynamics simulations , 2010 .

[9]  K. Tashiro,et al.  Structural Investigation of Orthorhombic-to-Hexagonal Phase Transition in Polyethylene Crystal: The Experimental Confirmation of the Conformationally Disordered Structure by X-ray Diffraction and Infrared/Raman Spectroscopic Measurements , 1996 .

[10]  B. Wunderlich,et al.  Melting and Heat Capacity of Gel-Spun, Ultra-High-Molar-Mass Polyethylene Fibers , 2000 .

[11]  Thomas A. Weber,et al.  Molecular dynamics simulation of polymers. I. Structure , 1979 .

[12]  F. L. Binsbergen,et al.  Orientation-induced Nucleation in Polymer Crystallization , 1966, Nature.

[13]  Hyun Oh Song,et al.  Variable thermal resistors (VTR) for thermal management of Chip Scale Atomic Clocks (CSAC) , 2008, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems.

[14]  G. Bertsch Melting in Clusters , 1997, Science.

[15]  A. Yamanaka,et al.  Thermal Conductivity and Diffusivity of High-Strength Polymer Fibers , 1997 .

[16]  E. Roduner Size matters: why nanomaterials are different. , 2006, Chemical Society reviews.

[17]  T. A. Kavassalis,et al.  Molecular dynamics study of polyethylene chain folding: the effects of chain length and the torsional barrier , 1995 .

[18]  I. Puri,et al.  Modifying thermal transport in electrically conducting polymers: effects of stretching and combining polymer chains. , 2012, The Journal of chemical physics.

[19]  Gang Chen,et al.  Polyethylene nanofibres with very high thermal conductivities. , 2010, Nature nanotechnology.

[21]  Jr-hau He,et al.  A thermal sensor and switch based on a plasma polymer/ZnO suspended nanobelt bimorph structure , 2009, Nanotechnology.

[22]  L. H. Sperling,et al.  Introduction to Physical Polymer Science: Sperling/Introduction to Physical Polymer Science, Fourth Edition , 2005 .

[23]  A. Keller Morphology of Crystallizing Polymers , 1952, Nature.

[24]  Phase-dependent thermal conductivity of Ge1Sb4Te7 and N:Ge1Sb4Te7 for phase change memory applications , 2010 .

[25]  Y. Lee,et al.  Thermal Conduction Switch for Thermal Management of Chip Scale Atomic Clocks (IMECE2006-14540) , 2008 .

[26]  T. Schneider,et al.  Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions , 1978 .

[27]  X. Geng,et al.  A self-adaptive thermal switch array for rapid temperature stabilization under various thermal power inputs , 2011 .

[28]  G. Marom,et al.  Phase Transitions in UHMWPE Fiber Compacts Studied by in situ Synchrotron Microbeam WAXS , 2004 .

[29]  S. N. Sahu,et al.  Liquid-drop model for the size-dependent melting of low-dimensional systems , 2002 .

[30]  Daan Frenkel,et al.  Simulations: The dark side , 2012, The European Physical Journal Plus.

[31]  I. Puri,et al.  Reducing thermal transport in electrically conducting polymers: Effects of ordered mixing of polymer chains , 2013 .

[32]  Baldev Raj,et al.  Nanofluid with tunable thermal properties , 2008 .

[33]  Jingcui Liang,et al.  Thermal and catalytic degradation of high density polyethylene and commingled post-consumer plastic waste , 1997 .

[34]  J. Lloyd,et al.  Enhancement of Thermal Energy Transport Across Graphene/Graphite and Polymer Interfaces: A Molecular Dynamics Study , 2012 .

[35]  T. Wisleder,et al.  Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements , 2000 .

[36]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[37]  M. Lavine,et al.  Characterization of polyethylene crystallization from an oriented melt by molecular dynamics simulation. , 2004, The Journal of chemical physics.

[38]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[39]  Jun Liu Length-dependent thermal conductivity of single extended polymer chains , 2014 .

[40]  L. Sperling Introduction to physical polymer science , 1986 .

[41]  B. Wunderlich,et al.  A Study of Equilibrium Melting of Polyethylene , 1977 .