Pancreas CT Segmentation by Predictive Phenotyping

[1]  Shunxing Bao,et al.  Body Part Regression With Self-Supervision , 2021, IEEE Transactions on Medical Imaging.

[2]  Shunxing Bao,et al.  High-resolution 3D abdominal segmentation with random patch network fusion , 2020, Medical Image Anal..

[3]  Shunxing Bao,et al.  Prediction of Type II Diabetes Onset with Computed Tomography and Electronic Medical Records , 2020, ML-CDS/CLIP@MICCAI.

[4]  Mihaela van der Schaar,et al.  Temporal Phenotyping using Deep Predictive Clustering of Disease Progression , 2020, ICML.

[5]  Laurens van der Maaten,et al.  Self-Supervised Learning of Pretext-Invariant Representations , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  F. Sanz,et al.  Identifying temporal patterns in patient disease trajectories using dynamic time warping: A population-based study , 2018, Scientific Reports.

[7]  Alan L. Yuille,et al.  A 3D Coarse-to-Fine Framework for Volumetric Medical Image Segmentation , 2017, 2018 International Conference on 3D Vision (3DV).

[8]  Fei Wang,et al.  Patient Subtyping via Time-Aware LSTM Networks , 2017, KDD.

[9]  Duc Thanh Anh Luong,et al.  A K-Means Approach to Clustering Disease Progressions , 2017, 2017 IEEE International Conference on Healthcare Informatics (ICHI).

[10]  Alan L. Yuille,et al.  Deep Supervision for Pancreatic Cyst Segmentation in Abdominal CT Scans , 2017, MICCAI.

[11]  Yan Wang,et al.  A Fixed-Point Model for Pancreas Segmentation in Abdominal CT Scans , 2016, MICCAI.

[12]  Ya Zhang,et al.  A Machine Learning-based Framework to Identify Type 2 Diabetes through Electronic Health Records , 2016, bioRxiv.

[13]  J. Virostko,et al.  Use of the Electronic Medical Record to Assess Pancreas Size in Type 1 Diabetes , 2016, PloS one.

[14]  Thomas Brox,et al.  3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation , 2016, MICCAI.

[15]  Ali Farhadi,et al.  Unsupervised Deep Embedding for Clustering Analysis , 2015, ICML.

[16]  Ronald M. Summers,et al.  DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation , 2015, MICCAI.

[17]  Ronald M. Summers,et al.  Deep convolutional networks for pancreas segmentation in CT imaging , 2015, Medical Imaging.

[18]  H. Quan,et al.  Coding Algorithms for Defining Comorbidities in ICD-9-CM and ICD-10 Administrative Data , 2005, Medical care.

[19]  C. Hales,et al.  Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis , 1992, Diabetologia.

[20]  Joshua C. Denny,et al.  Type 2 Diabetes Risk Forecasting from EMR Data using Machine Learning , 2012, AMIA.

[21]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[22]  E. Sasaki,et al.  Pancreatic volume in type 1 und type 2 diabetes mellitus , 2001, Acta Diabetologica.