A moving least square reproducing polynomial meshless method

Abstract Interest in meshless methods has grown rapidly in recent years in solving boundary value problems (BVPs) arising in science and engineering. In this paper, we present the moving least square radial reproducing polynomial (MLSRRP) meshless method as a generalization of the moving least square reproducing kernel particle method (MLSRKPM). The proposed method is established upon the extension of the MLSRKPM basis by using the radial basis functions. Some important properties of the shape functions are discussed. An interpolation error estimate is given to assess the convergence rate of the approximation. Also, for some class of time-dependent partial differential equations, the error estimate is acquired. The efficiency of the present method is examined by several test problems. The studied method is applied to the parabolic two-dimensional transient heat conduction equation and the hyperbolic two-dimensional sine-Gordon equation which are discretized by the aid of the meshless local Petrov–Galerkin (MLPG) method.

[1]  Mehdi Dehghan,et al.  Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM) , 2010, Comput. Phys. Commun..

[2]  N. S. Kambo Error of the Newton-Cotes and Gauss-Legendre quadrature formulas , 1970 .

[3]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[4]  S. Mukherjee,et al.  THE BOUNDARY NODE METHOD FOR POTENTIAL PROBLEMS , 1997 .

[5]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[6]  K. M. Liew,et al.  Analyzing two-dimensional sine–Gordon equation with the mesh-free reproducing kernel particle Ritz method , 2012 .

[7]  Satya N. Atluri,et al.  Stability analysis for inverse heat conduction problems , 2006 .

[8]  Satya N. Atluri,et al.  Meshless Local Petrov-Galerkin Method in Anisotropic Elasticity , 2004 .

[9]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[10]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..

[11]  Athanassios G. Bratsos,et al.  A modified predictor–corrector scheme for the two-dimensional sine-Gordon equation , 2007, Numerical Algorithms.

[12]  John Argyris,et al.  Finite element approximation to two-dimensional sine-Gordon solitons , 1991 .

[13]  Weimin Han,et al.  Error analysis of the reproducing kernel particle method , 2001 .

[14]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[15]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[16]  Vladimir Sladek,et al.  A local BIEM for analysis of transient heat conduction with nonlinear source terms in FGMs , 2004 .

[17]  Mehdi Dehghan,et al.  Meshless local Petrov-Galerkin (MLPG) approximation to the two dimensional sine-Gordon equation , 2010, J. Comput. Appl. Math..

[18]  Qing Hua Qin,et al.  A meshless model for transient heat conduction in functionally graded materials , 2006 .

[19]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[20]  Wen Chen,et al.  New Insights in Boundary-only and Domain-type RBF Methods , 2002, ArXiv.

[21]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[22]  Vladimir Sladek,et al.  Transient heat conduction in anisotropic and functionally graded media by local integral equations , 2005 .

[23]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[24]  Jiun-Shyan Chen,et al.  Error analysis of collocation method based on reproducing kernel approximation , 2011 .

[25]  Mehdi Dehghan,et al.  The finite point method for the p-Laplace equation , 2011 .

[26]  S. Atluri,et al.  The Meshless Local Petrov-Galerkin (MLPG) Method: A Simple \& Less-costly Alternative to the Finite Element and Boundary Element Methods , 2002 .

[27]  Mehdi Dehghan,et al.  Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions , 2009 .

[28]  Mehdi Dehghan,et al.  On the solution of the non-local parabolic partial differential equations via radial basis functions , 2009 .

[29]  Mehdi Dehghan,et al.  MLPG Method for Transient Heat Conduction Problem with MLS as Trial Approximation in Both Time and Space Domains , 2011 .

[30]  S. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) method , 2002 .

[31]  K. M. Liew,et al.  The reproducing kernel particle method for two-dimensional unsteady heat conduction problems , 2009 .

[32]  Jiun-Shyan Chen,et al.  Reproducing kernel enhanced local radial basis collocation method , 2008 .

[33]  Wing Kam Liu,et al.  Wavelet and multiple scale reproducing kernel methods , 1995 .

[34]  Mehdi Dehghan,et al.  A Meshless Method Using Radial Basis Functions for the Numerical Solution of Two-Dimensional Complex Ginzburg-Landau Equation , 2012 .

[35]  D. Roy,et al.  Mesh-free approximations via the error reproducing kernel method and applications to nonlinear systems developing shocks , 2009 .

[36]  S. Jun,et al.  Multiresolution reproducing kernel particle methods , 1997 .

[37]  Marc Duflot,et al.  Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..

[38]  M. Khezri,et al.  A unified approach to the mathematical analysis of generalized RKPM, gradient RKPM, and GMLS , 2011 .

[39]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[40]  Chuanzeng Zhang,et al.  Stress analysis in anisotropic functionally graded materials by the MLPG method , 2005 .

[41]  Satya N. Atluri,et al.  Meshless Local Petrov-Galerkin Method for Heat Conduction Problem in an Anisotropic Medium , 2004 .

[42]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[43]  S. Atluri The meshless method (MLPG) for domain & BIE discretizations , 2004 .

[44]  Weimin Han,et al.  A reproducing kernel method with nodal interpolation property , 2003 .

[45]  W. G. Price,et al.  Numerical solutions of a damped Sine-Gordon equation in two space variables , 1995 .

[46]  W. Han,et al.  Some Studies of the Reproducing Kernel Particle Method , 2003 .

[47]  P. S. Lomdahl,et al.  Numerical study of 2+1 dimensional sine-Gordon solitons , 1981 .

[48]  A. G. Bratsos The solution of the two-dimensional sine-Gordon equation using the method of lines , 2007 .

[49]  Satya N. Atluri,et al.  Analysis of Transient Heat Conduction in 3D Anisotropic Functionally Graded Solids, by the MLPG Method , 2008 .

[50]  R. Schaback,et al.  On generalized moving least squares and diffuse derivatives , 2012 .

[51]  Li,et al.  Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .

[52]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[53]  A. G. Bratsos An explicit numerical scheme for the Sine‐Gordon equation in 2+1 dimensions , 2005 .

[54]  Hsin-Yun Hu,et al.  Recent developments in stabilized Galerkin and collocation meshfree methods , 2011 .