Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling of Aryl Chlorobenzoates with Alkyl Grignard Reagents

Aryl benzoates are compounds of high importance in organic synthesis. Herein, we report the iron-catalyzed C(sp2)–C(sp3) Kumada cross-coupling of aryl chlorobenzoates with alkyl Grignard reagents. The method is characterized by the use of environmentally benign and sustainable iron salts for cross-coupling in the catalytic system, employing benign urea ligands in the place of reprotoxic NMP (NMP = N-methyl-2-pyrrolidone). It is notable that high selectivity for the cross-coupling is achieved in the presence of hydrolytically-labile and prone to nucleophilic addition phenolic ester C(acyl)–O bonds. The reaction provides access to alkyl-functionalized aryl benzoates. The examination of various O-coordinating ligands demonstrates the high activity of urea ligands in promoting the cross-coupling versus nucleophilic addition to the ester C(acyl)–O bond. The method showcases the functional group tolerance of iron-catalyzed Kumada cross-couplings.

[1]  M. Szostak,et al.  Ligand Effect on Iron‐Catalyzed Cross‐Coupling Reactions: Evaluation of Amides as O‐Coordinating Ligands , 2019, ChemCatChem.

[2]  M. Szostak,et al.  Iron-catalyzed C(sp2)–C(sp3) cross-coupling at low catalyst loading , 2019, Catalysis Science & Technology.

[3]  M. Szostak,et al.  N‐Methylcaprolactam as a Dipolar Aprotic Solvent for Iron‐Catalyzed Cross‐Coupling Reactions: Matching Efficiency with Safer Reaction Media , 2019, ChemCatChem.

[4]  W. Brennessel,et al.  The Effect of β-Hydrogen Atoms on Iron Speciation in Cross-Couplings with Simple Iron Salts and Alkyl Grignard Reagents. , 2019, Angewandte Chemie.

[5]  A. Fürstner Discussion Addendum for: 4‐Nonylbenzoic Acid , 2019 .

[6]  M. Szostak,et al.  Iron-Catalyzed C(sp2)-C(sp3) Cross-Coupling of Chlorobenzenesulfonamides with Alkyl Grignard Reagents: Entry to Alkylated Aromatics. , 2019, The Journal of organic chemistry.

[7]  Huixin He,et al.  Pd-Catalyzed Suzuki-Miyaura Cross-Coupling of Pentafluorophenyl Esters , 2018, Molecules.

[8]  M. Szostak,et al.  Iron‐Catalyzed C( sp 2 )−C( sp 3 ) Cross‐Coupling of Chlorobenzamides with Alkyl Grignard Reagents: Development of Catalyst System, Synthetic Scope, and Application , 2018, Advanced Synthesis & Catalysis.

[9]  M. Szostak,et al.  Decarbonylative cross-coupling of amides. , 2018, Organic & biomolecular chemistry.

[10]  S. Nolan,et al.  Well-Defined Palladium(II)-NHC Precatalysts for Cross-Coupling Reactions of Amides and Esters by Selective N-C/O-C Cleavage. , 2018, Accounts of chemical research.

[11]  M. Szostak,et al.  Iron-Catalyzed Cross-Couplings in the Synthesis of Pharmaceuticals: In Pursuit of Sustainability. , 2018, Angewandte Chemie.

[12]  S. Newman,et al.  Switchable Selectivity in the Pd-Catalyzed Alkylative Cross-Coupling of Esters. , 2018, Organic letters.

[13]  M. Szostak,et al.  N‐Acyl‐Glutarimides: Privileged Scaffolds in Amide N–C Bond Cross‐Coupling , 2018 .

[14]  M. Rueping,et al.  Transition-Metal-Catalyzed Decarbonylative Coupling Reactions: Concepts, Classifications, and Applications. , 2018, Chemistry.

[15]  W. Brennessel,et al.  The N-Methylpyrrolidone (NMP) Effect in Iron-Catalyzed Cross-Coupling with Simple Ferric Salts and MeMgBr. , 2018, Angewandte Chemie.

[16]  M. Szostak,et al.  2-Methyltetrahydrofuran: A Green Solvent for Iron-Catalyzed Cross-Coupling Reactions. , 2018, ChemSusChem.

[17]  M. Rueping,et al.  Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules. , 2018, Accounts of chemical research.

[18]  M. Szostak,et al.  Pd-PEPPSI: Water-Assisted Suzuki−Miyaura Cross-Coupling of Aryl Esters at Room Temperature using a Practical Palladium-NHC (NHC=N-Heterocyclic Carbene) Precatalyst , 2018 .

[19]  Y. Minenkov,et al.  Ligand-Controlled Chemoselective C(acyl)-O Bond vs C(aryl)-C Bond Activation of Aromatic Esters in Nickel Catalyzed C(sp2)-C(sp3) Cross-Couplings. , 2018, Journal of the American Chemical Society.

[20]  Junichiro Yamaguchi,et al.  Decarbonylative C-P Bond Formation Using Aromatic Esters and Organophosphorus Compounds. , 2018, Organic letters.

[21]  N. Hazari,et al.  Rapidly Activating Pd-Precatalyst for Suzuki-Miyaura and Buchwald-Hartwig Couplings of Aryl Esters. , 2018, The Journal of organic chemistry.

[22]  M. Szostak,et al.  Iron‐Catalyzed C(sp2)–C(sp3) Cross‐Coupling of Alkyl Grignard Reagents with Polyaromatic Tosylates , 2017 .

[23]  M. Szostak,et al.  Cyclic ureas (DMI, DMPU) as efficient, sustainable ligands in iron-catalyzed C(sp2)–C(sp3) coupling of aryl chlorides and tosylates , 2017 .

[24]  M. Szostak,et al.  Iron-Catalyzed C-O Bond Activation: Opportunity for Sustainable Catalysis. , 2017, ChemSusChem.

[25]  Junichiro Yamaguchi,et al.  Cross-coupling of aromatic esters and amides. , 2017, Chemical Society reviews.

[26]  M. Szostak,et al.  Pd-PEPPSI: A General Pd-NHC Precatalyst for Suzuki–Miyaura Cross-Coupling of Esters by C–O Cleavage , 2017 .

[27]  M. Szostak,et al.  Pd-PEPPSI: a general Pd-NHC precatalyst for Buchwald-Hartwig cross-coupling of esters and amides (transamidation) under the same reaction conditions. , 2017, Chemical communications.

[28]  S. DeBeer,et al.  Two Exceptional Homoleptic Iron(IV) Tetraalkyl Complexes. , 2017, Angewandte Chemie.

[29]  R. Szostak,et al.  Suzuki–Miyaura cross-coupling of amides and esters at room temperature: correlation with barriers to rotation around C–N and C–O bonds , 2017, Chemical science.

[30]  Jacob R. Ludwig,et al.  Catalyst: Sustainable Catalysis , 2017 .

[31]  Junichiro Yamaguchi,et al.  Decarbonylative Diaryl Ether Synthesis by Pd and Ni Catalysis. , 2017, Journal of the American Chemical Society.

[32]  S. Newman,et al.  A Cross-Coupling Approach to Amide Bond Formation from Esters , 2017 .

[33]  K. Houk,et al.  Palladium-Catalyzed Suzuki-Miyaura Coupling of Aryl Esters. , 2017, Journal of the American Chemical Society.

[34]  A. Fürstner Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion , 2016, ACS central science.

[35]  Yue Zhao,et al.  Nickel-Catalyzed Decarbonylative Borylation and Silylation of Esters , 2016 .

[36]  A. Fürstner Base‐Metal Catalysis Marries Utilitarian Aspects with Academic Fascination , 2016 .

[37]  Carl-Johan Wallentin,et al.  Active Species and Mechanistic Pathways in Iron-Catalyzed C–C Bond-Forming Cross-Coupling Reactions , 2016 .

[38]  Michael Reinhard,et al.  Iron Catalysis Fundamentals And Applications , 2016 .

[39]  J. Legros,et al.  Iron-promoted C-C bond formation in the total synthesis of natural products and drugs. , 2015, Natural product reports.

[40]  A. Jacobi von Wangelin,et al.  Iron-Catalyzed Cross-Coupling of Alkenyl Acetates. , 2015, Angewandte Chemie.

[41]  D. Musaev,et al.  Decarbonylative organoboron cross-coupling of esters by nickel catalysis , 2015, Nature Communications.

[42]  G. Nikonov,et al.  Transfer Hydrogenation of Ketones, Nitriles, and Esters Catalyzed by a Half‐Sandwich Complex of Ruthenium. , 2015 .

[43]  H. Knölker,et al.  Iron catalysis in organic synthesis. , 2015, Chemical reviews.

[44]  A. Fürstner,et al.  Elementary steps of iron catalysis: exploring the links between iron alkyl and iron olefin complexes for their relevance in C-H activation and C-C bond formation. , 2015, Angewandte Chemie.

[45]  G. Nikonov,et al.  Transfer Hydrogenation of Ketones, Nitriles, and Esters Catalyzed by a Half‐Sandwich Complex of Ruthenium , 2015 .

[46]  R. Giri,et al.  Palladium-Catalysed, Directed CH Coupling with Organometallics , 2014 .

[47]  S. Bräse,et al.  Metal-catalyzed cross-coupling reactions and more , 2014 .

[48]  P. Knochel,et al.  Ligand-accelerated iron- and cobalt-catalyzed cross-coupling reactions between N-heteroaryl halides and aryl magnesium reagents. , 2013, Angewandte Chemie.

[49]  Junichiro Yamaguchi,et al.  Decarbonylative C-H coupling of azoles and aryl esters: unprecedented nickel catalysis and application to the synthesis of muscoride A. , 2012, Journal of the American Chemical Society.

[50]  A. J. von Wangelin,et al.  Chlorostyrenes in iron-catalyzed biaryl coupling reactions. , 2012, Angewandte Chemie.

[51]  R. Jana,et al.  Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. , 2011, Chemical reviews.

[52]  Guoying Zhang,et al.  Cu(OTf)(2)-mediated Chan-Lam reaction of carboxylic acids to access phenolic esters. , 2010, The Journal of organic chemistry.

[53]  이동환,et al.  N-methyl-2-pyrrolidone 제제의 경피흡수촉진효과 , 2010 .

[54]  J. Cvengroš,et al.  Coming of age: sustainable iron-catalyzed cross-coupling reactions. , 2009, ChemSusChem.

[55]  A. Jacobi von Wangelin,et al.  Domino iron catalysis: direct aryl-alkyl cross-coupling. , 2009, Angewandte Chemie.

[56]  Alois Fürstner,et al.  The promise and challenge of iron-catalyzed cross coupling. , 2008, Accounts of chemical research.

[57]  A. Fürstner,et al.  Preparation, structure, and reactivity of nonstabilized organoiron compounds. Implications for iron-catalyzed cross coupling reactions. , 2008, Journal of the American Chemical Society.

[58]  W. Su,et al.  Palladium-catalyzed aromatic esterification of aldehydes with organoboronic acids and molecular oxygen. , 2008, Organic letters.

[59]  A. Fürstner,et al.  Advances in Iron Catalyzed Cross Coupling Reactions , 2005 .

[60]  P. Pasanen,et al.  Evidence of substituent-induced electronic interplay. Effect of the remote aromatic ring substituent of phenyl benzoates on the sensitivity of the carbonyl unit to electronic effects of phenyl or benzoyl ring substituents. , 2004, The Journal of organic chemistry.

[61]  A. Fürstner,et al.  Catalysis-based total synthesis of latrunculin B. , 2003, Angewandte Chemie.

[62]  A. Fürstner,et al.  A catalytic approach to (R)-(+)-muscopyridine with integrated "self-clearance". , 2003, Angewandte Chemie.

[63]  A. Fürstner,et al.  Iron-catalyzed cross-coupling reactions. , 2002, Journal of the American Chemical Society.

[64]  A. Fürstner,et al.  Iron-Catalyzed Cross-Coupling Reactions of Alkyl-Grignard Reagents with Aryl Chlorides, Tosylates, and Triflates , 2002 .

[65]  K. Pihlaja,et al.  Substituent influences on the stability of the ring and chain tautomers in 1,3-O,N-heterocyclic systems: characterization by 13C NMR chemical shifts, PM3 charge densities, and isodesmic reactions. , 2001, The Journal of organic chemistry.

[66]  P. Worms,et al.  NEW ANTICONVULSANTS: SCHIFF BASES OF Γ-AMINOBUTYRIC ACID AND Γ-AMINOBUTYRAMIDE , 1980 .

[67]  P. Worms,et al.  New anticonvulsants: Schiff bases of gamma-aminobutyric acid and gamma-aminobutyramide. , 1980, Journal of medicinal chemistry.

[68]  J. F. Liebman,et al.  The origin of rotational barriers in amides and esters. , 1974, Biophysical chemistry.