暂无分享,去创建一个
[1] F. Harary,et al. On the Number of Crossings in a Complete Graph , 1963, Proceedings of the Edinburgh Mathematical Society.
[2] P. Erdös,et al. Dissection Graphs of Planar Point Sets , 1973 .
[3] Daniel J. Kleitman. A note on the parity of the number of crossings of a graph , 1976, J. Comb. Theory, Ser. B.
[4] E. Welzl,et al. Convex Quadrilaterals and k-Sets , 2003 .
[5] László A. Székely. A successful concept for measuring non-planarity of graphs: the crossing number , 2004, Discret. Math..
[6] Jason S. Williford,et al. On the independence number of the Erdos-Rényi and projective norm graphs and a related hypergraph , 2007 .
[7] Shengjun Pan,et al. The crossing number of K11 is 100 , 2007, J. Graph Theory.
[8] Jesús Leaños,et al. On ≤k-Edges, Crossings, and Halving Lines of Geometric Drawings of Kn , 2011, Discret. Comput. Geom..
[9] Oswin Aichholzer,et al. The 2-Page Crossing Number of Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{n}$$\end{document} , 2012, Discrete & Computational Geometry.
[10] M. Schaefer. The Graph Crossing Number and its Variants: A Survey , 2013 .
[11] Oswin Aichholzer,et al. More on the crossing number of Kn: Monotone drawings , 2013, Electron. Notes Discret. Math..
[12] Oswin Aichholzer,et al. Non-Shellable Drawings of Kn with Few Crossings , 2014, CCCG.
[13] Oswin Aichholzer,et al. Shellable Drawings and the Cylindrical Crossing Number of $$K_{n}$$Kn , 2014, Discret. Comput. Geom..
[14] Shengjun Pan,et al. On the crossing number of K13 , 2015, J. Comb. Theory, Ser. B.
[15] B. Ábrego,et al. All Good Drawings of Small Complete Graphs , 2015, EuroCG 2015.
[16] Jan Kyncl,et al. Crossing Numbers and Combinatorial Characterization of Monotone Drawings of $$K_n$$Kn , 2013, Discret. Comput. Geom..
[17] Lutz Oettershagen,et al. The Crossing Number of Seq-Shellable Drawings of Complete Graphs , 2018, IWOCA.
[18] Bojan Mohar,et al. Bishellable drawings of Kn , 2015, SIAM J. Discret. Math..